ANALYSIS OF LEARNING STYLES IN DISTANCE EDUCATION:

THE USE OF SMART ALGORITHMS

Authors

DOI:

https://doi.org/10.12957/riae.2024.86109

Abstract

Artificial Intelligence (AI) is a recent topic in academic research and studies, specifically in the area of Education and even though we are aware that AI is already part of our daily activities and is intensifying in other areas, there are still few studies that use Artificial Intelligence in the search for educational solutions in the Distance Education Modality (EAD). This article aims to analyze the results of an institutional project entitled “The Theory of Learning Styles Applied to Distance Learning”. The research was developed from 2020 to 2023. For data collection, a CHAEA 32 questionnaire was used, which was analyzed using the hypothetical-deductive method. The research was developed in five phases: systematic literary review; completing the CHAEA 32 questionnaire (adapted); data analysis (identification of students' predominant Learning Styles); implementation (recognition of student behaviors); execution (correlate the identified Learning Styles with known behaviors). In this work, as a theoretical framework it was adopted the concept of Learning Styles defined by Alonso, Gallego and Honey (2002), Cavellucci (2006), Costa (2022). To define AI, the concepts of Russell, Norvig (2013) were used. In the results, the data indicate that from the group of 120 students divided into five classes of a distance learning training course, who voluntarily answered the CHEA32 questionnaire, we observed that there is no correlation between these styles and the behavioral variables used in the study. In addition to the result of the analysis of the VLE data, an important contribution of this work was to be able to prove that the identification of students' behaviors in the Virtual Learning Environment alone is insufficient to detect their standard Learning Style, mainly because these behaviors are influenced by other external factors such as social, environmental and physiological.

Keywords: Distance Education; Learning Styles; Smart algorithms

Author Biographies

Elizane Silva do Nascimento, IFRN

Mestranda em Educação Profissional - PPGEP/IFRN, Linha de Pesquisa 2 - Formação Docente e Práticas Pedagógica (2024), Especialização em Tecnologias Educacionais e Educação à Distância - IFRN (2024),  Graduada em Pedagogia pela Universidade Federal do Rio Grande do Norte - UFRN (2007-2011).

Míriam Síria Rodrigues de Souza, Instituto Federal do rio Grande do Norte

Mestranda PPGEP -IFRN (2024), Pós-graduada em Libras (2022) e Gestão da Comunicação Institucional (2009), atualmente atua na Tutoria  das disciplinas: Língua Portuguesa e Leitura e Produção de Texto, na Licenciatura em Matemática Ead - IFRN. Experiência, no ensino médio técnico subsequente, como Professora Formadora e Tutora e docente no ensino fundamental. Técnica em Secretaria Escolar (2021), Técnica em Registro e Informações em Saúde (2011) e com Magistério (1985). 

ROBERTO DOUGLAS DA COSTA, Instituto Federal do rio Grande do Norte

Graduado em Sistemas de Informação pela Universidade Potiguar, Especialista em Novas Tecnologias na Educação pela Escola Superior Aberta do Brasil - ESAB, Mestre em sistemas computacionais pelo programa de pós-Graduação em Ciência da Computação da UERN/UFERSA e Doutor pelo programa de Pós-Graduação em Engenharia Elétrica e Computação da UFRN.

Published

2025-02-10

How to Cite

NASCIMENTO, Elizane Silva do; RODRIGUES DE SOUZA, Míriam Síria; COSTA, ROBERTO DOUGLAS DA. ANALYSIS OF LEARNING STYLES IN DISTANCE EDUCATION: : THE USE OF SMART ALGORITHMS . Revista Interinstitucional Artes de Educar, [S. l.], v. 11, n. 1, p. 153–168, 2025. DOI: 10.12957/riae.2024.86109. Disponível em: https://www.e-publicacoes.uerj.br/riae/article/view/86109. Acesso em: 22 may. 2025.

Issue

Section

DOSSIÊ: A INTELIGÊNCIA ARTIFICIAL E EDUCAÇÃO: DEBATES CRÍTICOS E BOAS PRÁTICAS NA ESCOLA BÁSICA E NA EDUCAÇÃO SUPERIOR