Medição do conforto na mobilidade urbana

métricas objetivas e subjetivas

Autores

  • Eliza Kronenberger PUC-Rio
  • Manuela Quaresma

DOI:

https://doi.org/10.12957/arcosdesign.2025.87059

Palavras-chave:

Mobilidade urbana, Conforto, Bem-Estar, Design Centrado no Usuário, Métricas de Avaliação

Resumo

A mobilidade urbana é um campo interdisciplinar que impacta significativamente a qualidade de vida urbana. O conforto na mobilidade urbana é fundamental para a experiência do viajante, englobando diversos meios de transporte e tecnologias. Fatores como duração da viagem, infraestrutura e segurança influenciam o bem-estar. Este estudo realiza uma revisão sistemática das métricas objetivas e subjetivas usadas para avaliar o conforto na viagem, como dados cardiológicos, questionários de satisfação, e métodos geoespaciais. Conclui-se que uma abordagem interdisciplinar e o uso de dados psicométricos e biométricos são essenciais para entender e melhorar a experiência de mobilidade urbana, promovendo políticas que considerem tanto os aspectos físicos quanto psicológicos do bem-estar dos usuários.

Downloads

Não há dados estatísticos.

Referências

ABENOZA, R. F. et al. User experiences and perceptions of women-only transport services in Mexico. [S. l.]: Taylor and Francis, 2020.

ABENOZA, R. F.; CATS, O.; SUSILO, Y. O. Determinants of traveler satisfaction: Evidence for non-linear and asymmetric effects. Transportation Research Part F: Traffic Psychology and Behaviour, [s. l.], v. 66, p. 339–356, 2019.

ABUDINEN, D.; FUENTES, L. G.; MUÑOZ, J. S. C. Travel quality assessment of urban roads based on international roughness index: Case study in Colombia. Transportation Research Record, [s. l.], v. 2612, p. 1–10, 2017.

ALESSANDRETTI, L.; SZELL, M. Urban Mobility. [s. l.], 2022.

ARUP. Dubai’s new pedestrian walkway provides a quick and convenient means of moving between destinations. [S. l.], 2009. Disponível em: https://www.arup.com/projects/dubai-pedways-development-strategy. Acesso at: 28 Oct. 2023.

BARRÍA, C. et al. Relating emotions, psychophysiological indicators and context in public transport trips: Case study and a joint framework for data collection and analysis. Transportation Research Part F: Traffic Psychology and Behaviour, [s. l.], v. 95, p. 418–431, 2023.

BÖCKER, L.; DIJST, M.; FABER, J. Weather, transport mode choices and emotional travel experiences. Transportation Research Part A: Policy and Practice, [s. l.], v. 94, p. 360–373, 2016.

BONERA, M. et al. Travel experience on board urban buses: A comparison between Bristol and Brescia. European Transport - Trasporti Europei, [s. l.], n. 76, 2020.

BOSCH, E. et al. Multimodal Estimation of Frustrative Driving Situations Using a Latent Variable Model. In: , 2022. 2022 13th IEEE International Conference on Cognitive Infocommunications (CogInfoCom). [S. l.]: IEEE, 2022. p. 11–16.

BOSCH, E.; LUTHER, R.; IHME, K. Travel Experience in Public Transport: A Geospatial Analysis by Experience Mapping. In: TRAVEL EXPERIENCE IN PUBLIC TRANSPORT, 2023. MuC ’23: Mensch und Computer 2023. [S. l.]: ACM, 2023. p. 417–421.

BRAMER, W. M. et al. A systematic approach to searching: an efficient and complete method to develop literature searches. Journal of the Medical Library Association, [s. l.], v. 106, n. 4, 2018.

CALABRESE, F. et al. Understanding individual mobility patterns from urban sensing data: A mobile phone trace example. Transportation Research Part C: Emerging Technologies, [s. l.], v. 26, p. 301–313, 2013.

CHATTERJEE, K. et al. Commuting and wellbeing: a critical overview of the literature with implications for policy and future research. Transport Reviews, [s. l.], v. 40, n. 1, p. 5–34, 2020.

CONCEIÇÃO, M. A. et al. The effect of transport infrastructure, congestion and reliability on mental wellbeing: a systematic review of empirical studies. Transport Reviews, [s. l.], v. 43, n. 2, p. 264–302, 2023.

CUSHING, D. F.; MILLER, E. Creating Great Places. New York, NY: Routledge, 2020.: Routledge, 2019.

ETTEMA, D. et al. Travel Mode Use, Travel Mode Shift and Subjective Well-Being: Overview of Theories, Empirical Findings and Policy Implications. In: MOBILITY, SOCIABILITY AND WELL-BEING OF URBAN LIVING. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. p. 129-150.

FIGUEIREDO, M. A. D. M.; SILVA, L. F.; BARNABÉ, T. L. Transporte coletivo: vibração de corpo-inteiro e conforto de passageiros, motoristas e cobradores. Journal of Transport Literature, [s. l.], v. 10, n. 1, p. 35–39, 2016.

GANGADHARAIAH, R. et al. A User-Centered Design Exploration of Factors That Influence the Rideshare Experience. Safety, [s. l.], v. 9, n. 2, 2023.

GARAU, C.; PAVAN, V. Evaluating Urban Quality: Indicators and Assessment Tools for Smart Sustainable Cities. Sustainability, [s. l.], v. 10, n. 3, p. 575, 2018.

HUANG, W.; SHUAI, B. A methodology for calculating the passenger comfort benefits of railway travel. Journal of Modern Transportation, [s. l.], v. 26, n. 2, p. 107–118, 2018.

KLINGER, T.; KENWORTHY, J. R.; LANZENDORF, M. Dimensions of urban mobility cultures – a comparison of German cities. Journal of

Transport Geography, [s. l.], v. 31, p. 18–29, 2013.

KYRIAKOU, K. et al. Detecting Moments of Stress from Measurements of Wearable Physiological Sensors. Sensors, [s. l.], v. 19, n. 17, p. 3805, 2019.

LEITE, V. D. de M.; AVILA, S. H.; FIGUEIREDO, V. L. M. de. An instrument to measure passenger satisfaction of a public transport system.

Revista Gestão da Produção Operações e Sistemas, [s. l.], v. 12, n. 1, p. 63–82, 2017.

LITMAN, T. Build for Comfort, Not Just Speed - Valuing Service Quality Impacts in Transport Planning. Victoria: [s. n.], 2023a.

LITMAN, T. Cool Walkability Planning. Victoria: [s. n.], 2023b.

LOPEZ-CARREIRO, I. et al. Urban mobility in the digital era: An exploration of travellers’ expectations of MaaS mobile-technologies. Technology in Society, [s. l.], v. 63, p. 101392, 2020.

LUCAS, K. et al. Is transport poverty socially or environmentally driven? Comparing the travel behaviours of two low-income populations living in central and peripheral locations in the same city. Transportation Research Part A: Policy and Practice, [s. l.], v. 116, p. 622–634, 2018.

MAYO, N. E.; MATE, K. K. V. Quantifying Mobility in Quality of Life. In: WAC, K.; WULFOVICH, S. (org.). Quantifying Quality of Life. Cham: Springer International Publishing, 2022. p. 119–136.

MONZON, A.; JULIO, R.; GARCIA-MARTINEZ, A. Hybrid methodology for improving response rates and data quality in mobility surveys. Travel Behaviour and Society, [s. l.], v. 20, p. 155–164, 2020.

MORELLI, N.; DE GÖTZEN, A.; SIMEONE, L. Service Design Capabilities. Cham: Springer International Publishing, 2021. v. 10

NOVACO, R. W.; GONZALEZ, O. I. Commuting and well-being. In: AMICHAI-HAMBURGER, Y. (org.). Technology and Psychological Well-being. 1. ed. [S. l.]: Cambridge University Press, 2009. p. 174–205.

PARK, K.; FARB, A.; CHEN, S. First-/last-mile experience matters: The influence of the built environment on satisfaction and loyalty among public transit riders. Transport Policy, [s. l.], v. 112, p. 32–42, 2021.

PIERONI, C. et al. Big data for big issues: Revealing travel patterns of low-income population based on smart card data mining in a global south unequal city. Journal of Transport Geography, [s. l.], v. 96, p. 103203, 2021.

PIRRA, M.; PENSA, R. G. Comparing Transport Quality Perception among Different Travellers in European Cities through Co-Cluster Analysis. Sustainability, [s. l.], v. 11, n. 24, p. 7159, 2019.

POURHASHEM, G. et al. Factors influencing the perceived value of travel time in European urban areas. Transportation, [s. l.], 2023.

RODRIGUES, A. L. et al. Measuring mobility inequalities of favela residents based on mobile phone data. Habitat International, [s. l.], v. 110, p. 102346, 2021.

ROLIM, V. B.; BALDO, F. Modelo de Predição de Conforto de Usuários do Transporte Coletivo. In: , 2021. Computer on the Beach. [S. l.]: Universidade do Vale do Itajaí, 2021. p. 64–71.

ROSA, L.; SILVA, F.; ANALIDE, C. Urban Human Mobility Modelling and Prediction: Impact of Comfort and Well-Being Indicators. In: MARREIROS, G. et al. (org.). Progress in Artificial Intelligence. Cham: Springer International Publishing, 2021. v. 12981, p. 278–289.

SANDERS, E. B. N. From user-centered to participatory design approaches. In: FRASCARA, J. (org.). Design and the Social Sciences: Making Connections. 1. ed. New York: Taylor & Francis, 2002. p. 1–8.

SANGIORGI, D.; PRENDIVILLE, A. Designing for Service: Key Issues and New Directions. [S. l.]: Bloomsbury Academic, 2017.

SCHERER, K. R. What are emotions? And how can they be measured?. Social Science Information, [s. l.], v. 44, n. 4, p. 695–729, 2005.

SCHIEFELBUSCH, M. Analyzing and Assessing the Experience of Traveling by Public Transport. Journal of Public Transportation, [s. l.], v. 18, n. 4, p. 46–72, 2015.

SEVILLANO, V.; LÓPEZ-SÁEZ, M.; MAYORDOMO, S. Consecuencias emocionales de las propiedades instrumentales y simbólicas de los medios de transporte urbano. Psyecology, [s. l.], v. 1, n. 1, p. 47–56, 2010.

SIŁA-NOWICKA, K. et al. Analysis of human mobility patterns from GPS trajectories and contextual information. International Journal of Geographical Information Science, [s. l.], v. 30, n. 5, p. 881–906, 2016.

STAFFIERI, S.; CAVAGNARO, E. Youth travel experience: An analysis of the relations between motivations, satisfaction and perceived change. WIT Transactions on Ecology and the Environment, [s. l.], v. 227, p. 95–106, 2018.

STICKDORN, M. et al. Prototyping Methods. In: THIS IS SERVICE DESIGN DOING: APPLYING SERVICE DESIGN THINKING IN THE REAL WORLD. 1. ed. [S. l.]: O’Reilly Media, 2018. p. 146–207.

STICKDORN, M.; SCHNEIDER, J. Isto É Design Thinking de Serviços: Fundamentos, Ferramentas, Casos. 1. ed. [S. l.]: Bookman, 2014.

STREHL, E. G.; MOYANO, C. A. M.; ANGNES, D. L. Atributos Qualitativos e Fatores de Satisfação com o Transporte Público Urbano por Ônibus. Contextus – Revista Contemporânea de Economia e Gestão, [s. l.], v. 17, n. 1, p. 98–126, 2019.

USECHE, S. A.; MARIN, C.; LLAMAZARES, F. J. “Another (hard) day moving in the city”: Development and validation of the MCSS, a multimodal commuting stress scale. Transportation Research Part F: Traffic Psychology and Behaviour, [s. l.], v. 95, p. 143–159, 2023.

VAZQUEZ-PROKOPEC, G. M. et al. Using GPS Technology to Quantify Human Mobility, Dynamic Contacts and Infectious Disease Dynamics in a Resource-Poor Urban Environment. PLoS ONE, [s. l.], v. 8, n. 4, p. e58802, 2013.

XIAO, Y.; WATSON, M. Guidance on Conducting a Systematic Literature Review. Journal of Planning Education and Research, [s. l.], v. 39, n. 1, p. 93–112, 2019.

ZHOU, Y. et al. Accessibility to high speed rail service in the multimodal transport networks with uncertainties: Case study at Beijing south railway station. In: , 2017. (S. T. N. N. Chen A., Org.)Transport and Society - Proceeding of the 22nd International Conference of Hong Kong Society for Transportation Studies, HKSTS 2017. [S. l.]: Hong Kong Society for Transportation Studies Limited, 2017. p. 391–398.

Downloads

Publicado

17-12-2024

Como Citar

KRONENBERGER, Eliza; QUARESMA, Manuela. Medição do conforto na mobilidade urbana: métricas objetivas e subjetivas. Arcos Design, Rio de Janeiro, v. 18, n. 1, p. 178–201, 2024. DOI: 10.12957/arcosdesign.2025.87059. Disponível em: https://www.e-publicacoes.uerj.br/arcosdesign/article/view/87059. Acesso em: 1 maio. 2025.

Edição

Seção

Artigos Completos em Fluxo Contínuo