Avaliação antimicrobiana do óleo de coco virgem frente a microrganismos patógenos de pele e a causadores de infecção urinária

Autores

DOI:

https://doi.org/10.12957/sustinere.2024.73109

Palavras-chave:

Ácidos graxos saturados de cadeia média, Resistência microbiana, Concentração inibitória mínima

Resumo

Os antimicrobianos são fármacos que ao serem amplamente utilizados, ou utilizados de maneira incorreta, podem conferir características ao microrganismo, tornando-o resistente ao tratamento. Alguns microrganismos estão se tornando cada vez mais resistentes aos antimicrobianos convencionais. Por isso, o OCV surge como uma alternativa natural, economicamente viável, abundante e que possui baixo potencial para criar resistência microbiana, auxiliando na inibição destes patógenos comuns. Porém, ainda existem poucos estudos que demonstram sua atividade antimicrobiana para que se defina a sua eficácia. Portanto, o objetivo desta pesquisa foi avaliar a atividade antimicrobiana do OCV frente a microrganismos patógenos de pele e a causadores de infecção urinária, abrangendo fungos e bactérias Gram-positivas e negativas. Para tanto, foi utilizado o método de microdiluição seriada em caldo em placas de 96 poços com diferentes concentrações do produto aplicadas frente a Candida albicans, Trichophyton rubrum, Staphylococcus aureus, Cutibacterium acnes, Escherichia coli e Proteus mirabilis. Foi possível concluir que S. aureus foi o microrganismo que mais foi inibido dentre os microrganismos testados, sendo 0,25 mM de AL no OCV a concentração inibitória de 30% de seu crescimento e C. albicans foi o microrganismo que menos foi inibido pelo OCV. O restante dos microrganismos não apresentou graus de inibição satisfatórios.

Biografia do Autor

Júlia Wanderer, Universidade do Vale do Taquari

Biom´édcia, Universidade do Vale do Taquari

Lucas Lago Bergamaschi, Universidade do Vale do Taquari

Biomédico, Mestre em Ciências Médicas e doutorando em Biotecnologia pela Universidade do Vale do Taquari.

Thais Müller, Universidade do Vale do Taquari

Doutora em Ciências: Ambiente e Desenvolvimento - Universidade do Vale do Taquari.

Daiane Heidrich, Universidade do Vale do Taquari

Doutora em Ecologia, Universidade do Vale do Taquari 

Claudete Rempel, Universidade do Vale do Taquari

Nada.

Mônica Jachetti Maciel, Universidade do Vale do Taquari

Doutora em Ciências Veterinárias, Universidade do Vale do Taquari.

Referências

AL KINDI, A. et al. Staphylococcus aureus second immunoglobulin-binding protein drives atopic dermatitis via IL-33. Journal of Allergy and Clinical Immunology, v. 147, n. 4, p. 1354-1368. e3, 2021. Disponível em:<https://www.sciencedirect.com/science/article/pii/S009167492031335X?casa_token=hYLoIphSkCAAAAAA:AgkYuiumZmVcl-xsDbbs1VOEyp0JSyOPYuatCleP22TOcKs-biT9ieyGkTBAhWd0FYez2gzlF570>. Acesso em: 11 out. 2022.

AKULA, S. T. et al. Antifungal efficacy of lauric acid and caprylic acid–Derivatives of virgin coconut oil against Candida albicans. Biomedical and Biotechnology Research Journal, v. 5, n. 2, p. 229, 2021. Disponível em: <https://www.bmbtrj.org/article.asp?issn=2588-9834;year=2021;volume=5;issue=2;spage=229;epage=234;aulast=Akula>. Acesso em: 14 jun. 2022.

BERGSSON, G. et al. In vitro killing of Candida albicans by fatty acids and monoglycerides. Antimicrobial agents and chemotherapy, v. 45, n. 11, p. 3209-3212, 2001. Disponível em: <https://journals.asm.org/doi/full/10.1128/AAC.45.11.3209-3212.2001>. Acesso em: 17 out. 2022.

BONAR, E. et al. Human skin microbiota-friendly lysostaphin. International Journal of Biological Macromolecules, v. 183, p. 852-860, 2021. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0141813021009272#bb0020>. Acesso em: 16 out. 2022.

BRASIL. Agência Nacional de Vigilância Sanitária - ANVISA. Antimicrobianos - base teórica e uso clínico. Brasília 2007. Disponível em:

<https://www.anvisa.gov.br/servicosaude/controle/rede_rm/cursos/rm_controle/opas_web/modulo1/conceitos.htm>. Acesso em: 04 set. 2022.

BRASIL. Ministério da Saúde. Secretaria de Políticas de Saúde. Programa Nacional de Doenças Sexualmente Transmissíveis e Aids. Técnica de Coloração de GRAM. Brasília, DF. 2001. Disponível em: <https://bvsms.saude.gov.br/bvs/publicacoes/115_03gram.pdf>. Acesso em: 14 jun. 2022.

BUSH, L. M.; VAZQUEZ-PERTEJO, M. T. Infecções por Proteeae. Manual MSD. New Jersey, 2022. Disponível em: <https://www.msdmanuals.com/pt-br/profissional/doen%C3%A7as-infecciosas/bacilos-gram-negativos/infec%C3%A7%C3%B5es-por-proteeae>. Acesso em: 22 mai. 2022.

CARVALHO, G. C. et al. Prevalence of vulvovaginal candidiasis in Brazil: a systematic review. Medical Mycology, 2021. Disponível em:<https://academic.oup.com/mmy/article-abstract/59/10/946/6302380>. Acesso em: 10 set. 2022.

CLINICAL AND LABORATORY STANDARDS INSTITUTE - CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 4th Edition, 2017a. Disponível em: <https://clsi.org/standards/products/microbiology/documents/m27/>. Acesso em: 02 nov. 2022.

CLINICAL AND LABORATORY STANDARDS INSTITUTE - CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi, 3rd Edition, 2017b. Disponível em: <https://clsi.org/standards/products/microbiology/documents/m38/>. Acesso em: 03 nov. 2022.

CLINICAL AND LABORATORY STANDARDS INSTITUTE - CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 11th Edition, 2018a. Disponível em: <https://clsi.org/standards/products/microbiology/documents/m07/>. Acesso em: 22 mai. 2022.

CLINICAL AND LABORATORY STANDARDS INSTITUTE - CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 32nd Edition, 2018b. Disponível em: <https://clsi.org/standards/products/microbiology/companion/m100-plus/>. Acesso em: 22 mai. 2022.

FIRINU, D. et al. Successful treatment of chronic mucocutaneous candidiasis caused by azole-resistant Candida albicans with posaconazole. Clinical and Developmental Immunology, v. 2011, 2011. Disponível em: <https://www.hindawi.com/journals/jir/2011/283239/>. Acesso em: 08 jul. 2022.

GARG, A. P.; MIILLER, J. Inhibition of growth of dermatophytes by Indian hair oils: Wachstumshemmung von Dermatophyten durch indische Haaröle. Mycoses, v. 35, n. 11‐12, p. 363-369, 1992.

GUPTA, M.; BHARGAVA, S. Home remedies in different pediatric dermatoses: An observational study. Dermatologic Therapy, v. 33, n. 6, p. e14141, 2020. Disponível em:< https://pubmed.ncbi.nlm.nih.gov/32761779/>. Acesso em 10 out. 2022.

HATTON, N. E.; BAUMANN, C. G.; FASCIONE, M. A. Developments in Mannose-Based Treatment for Uropathogenic Escherichia coli - Induced Tract Infections. Chembiochem , v. 22, n. 4, p. 613, 2021. Disponível em: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7894189/>. Acesso em 11 out. 2022.

HEIDRICH, D. Dermatofitoses: estudo de 16 anos na região metropolitana no Sul do Brasil. 2013. Disponível em: <https://www.lume.ufrgs.br/handle/10183/143784>. Acesso em: 07 jul. 2022.

HUANG, W. C. et al. Anti-bacterial and anti-inflammatory properties of capric acid against Propionibacterium acnes: a comparative study with lauric acid. Journal of Dermatological Science, v. 73, n. 3, p. 232-240, 2014. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0923181113003587?casa_token=YcjbeMIhZ-EAAAAA:2a3GmAq2tnWjEF-s57K_UwKCceBh4I3r4xWqylJjLnWFudtayGxgW2sThijnqVXTF_UyfiKBY6H->. Acesso em 10 out. 2022.

HUNG, K. J. et al. Effect of commercial vaginal products on the growth of uropathogenic and commensal vaginal bacteria. Scientific reports, v. 10, n. 1, p. 1-6, 2020. Disponível em: <https://www.nature.com/articles/s41598-020-63652-x>. Acesso em: 13 jun. 2022.

HWANG, J. et al. Updated understanding of Staphylococcus aureus in atopic dermatitis: From virulence factors to commensals and clonal complexes. Experimental Dermatology, 2021. Disponível em: <https://onlinelibrary.wiley.com/doi/full/10.1111/exd.14435>. Acesso em: 11 out. 2022.

ISMAIL, N. A. et al. Evaluation of gellan gum film containing virgin coconut oil for transparent dressing materials. Advances in Biomaterials, v. 2014, 2014. Disponível em:<https://downloads.hindawi.com/archive/2014/351248.pdf>. Acesso em: 13 jun. 2022.

KAMINSKY, A. et al. Large prospective study on adult acne in Latin America and the Iberian Peninsula: risk factors, demographics, and clinical characteristics. International Journal of Dermatology, v. 58, n. 11, p. 1277-1282, 2019. Disponível em: <https://onlinelibrary.wiley.com/doi/abs/10.1111/ijd.14441?casa_token=JAK4ofhsf3MAAAAA:aOhgjYVlFRbkRQITnbWT8zCXvYPH6xKpb75zvQRI5z35YsMsCghZ7cE8E4cF3ChMutOaGMWk3womuGC9>. Acesso em: 10 out. 2022.

KITAHARA, T. et al. In vitro activity of lauric acid or myristylamine in combination with six antimicrobial agents against methicillin-resistant Staphylococcus aureus (MRSA). International journal of antimicrobial agents, v. 27, n. 1, p. 51-57, 2006. Disponível em: < https://pubmed.ncbi.nlm.nih.gov/16318911/ >. Acesso em: 14 jun. 2022.

KOEHLER, A. et al. Molecular identification and antifungal susceptibility of 75 clinical isolates of Trichophyton spp. from southern Brazil. Journal of Medical Mycology, v. 31, n. 4, p. 101201, 2021. Disponível em: <https://www.sciencedirect.com/science/article/pii/S1156523321000913?casa_token=HtntMg4Xdp8AAAAA:zxx4ixAcd1LDJBaoysGk51G_ZG1yqUYacBSzE2mydzf5K6KkXxXD7C9IjA8I4mqJuO1-2T_rfREy>. Acesso em: 08 out. 2022.

LEE, Y. et al. Antifungal drug resistance: molecular mechanisms in Candida albicans and beyond. Chemical Reviews, v. 121, n. 6, p. 3390-3411, 2020. Disponível em: <https://pubs.acs.org/doi/abs/10.1021/acs.chemrev.0c00199?casa_token=HxjJ94M6INAAAAAA:5dUf8wC3xTydZbfKyk_g4kgedUSb1pLei0t-81E56UJIt9Aa-4sq5zUpUzMaTEXhKdBWDTVMXdFNHlC_LA>. Acesso em: 04 set. 2022.

MATSUE, M. et al. Measuring the antimicrobial activity of lauric acid against various bacteria in human gut microbiota using a new method. Cell Transplantation, v. 28, n. 12, p. 1528-1541, 2019. Disponível em: <https://journals.sagepub.com/doi/full/10.1177/0963689719881366>. Acesso em: 04 set. 2021.

NAGALAKSHMI, S.; SARANRAJ, P.; SIVASAKTHIVELAN, P. Determination of Antibacterial Activity of Essential Oils Against Gram Negative Bacterial Pathogens. Journal of Functional Materials and Biomolecules, v.3, n. 1, p. 13-17, 2019. Disponível em: <https://www.researchgate.net/profile/P-Saranraj/publication/335231080_Determination_of_Antibacterial_Activity_of_Essential_Oils_Against_Gram_Negative_Bacterial_Pathogens/links/5d59c0bb45851545af4dd1eb/Determination-of-Antibacterial-Activity-of-Essential-Oils-Against-Gram-Negative-Bacterial-Pathogens.pdf>. Acesso em: 22 mai. 2022.

NIKAIDO, H. Multidrug efflux pumps of gram-negative bacteria. Journal of bacteriology, v. 178, n. 20, p. 5853-5859, 1996. Disponível em: <https://journals.asm.org/doi/pdf/10.1128/jb.178.20.5853-5859.1996>. Acesso em: 14 jun. 2022.

OGBOLU, D. O. et al. In vitro antimicrobial properties of coconut oil on Candida species in Ibadan, Nigeria. Journal of Medicinal Food, v. 10, n. 2, p. 384-387, 2007. Disponível em: < https://pubmed.ncbi.nlm.nih.gov/17651080/ >. Acesso em 04 set. 2022.

OLIVEIRA, S. F. et al. Antimicrobial activity of coconut oil-in-water emulsion on Staphylococcus epidermidis and Escherichia coli EPEC associated to Candida kefyr. Heliyon, v. 4, n. 11, p. e00924, 2018. Disponível em: <https://reader.elsevier.com/reader/sd/pii/S2405844018308983?token=7F3208F0FC9D95D333E58B49C5B57B2738ED353F6ED6FBB7282FFFD3147318CC8D86643BC07F13499B384271B271497D&originRegion=us-east-1&originCreation=20210905185957>. Acesso em: 04 set. 2021.

PARRISH, N. et al. Activity of Various Essential Oils Against Clinical Dermatophytes of Microsporum and Trichophyton. Frontiers in Cellular and Infection Microbiology, v. 10, p. 567, 2020. Disponível em: <https://www.frontiersin.org/articles/10.3389/fcimb.2020.545913/full?fbclid=IwAR1pi2DuygzEy8YbS_mSf_c19cFU9Le1CbL4agnt3R49Ruth3KNy2UxBFbo#T2>. Acesso em: 04 set. 2022.

SHAHEENA, S. et al. Extraction of bioactive compounds from Psidium guajava and their application in dentistry. AMB express, v. 9, n. 1, p. 1-9, 2019. Disponível em: <https://link.springer.com/article/10.1186/s13568-019-0935-x#Tab4>. Acesso

em: 17 out. 2022.

SHINO, B. et al. Comparison of antimicrobial activity of chlorhexidine, coconut oil, probiotics, and ketoconazole on Candida albicans isolated in children with early childhood caries: An in vitro study. Scientifica, v. 2016, 2016. Disponível em: <https://www.hindawi.com/journals/scientifica/2016/7061587/>. Acesso em: 04 set. 2022.

SILALAHI, J. et al. Antibacterial Activity of Chitosan and Hydrolyzed Coconut Oil and Their Combination Against Bacillus cereus and Eschericia coli. Asian Journal of Pharmaceutical and Clinical Research, v. 11, n. 10, p. 69-73, 2018. Disponível em: <https://www.researchgate.net/profile/Jansen-Silalahi/publication/309117955_Antibacterial_activity_of_chitosan_and_hydrolyzed_coconut_oil_and_their_combination_against_bacillus_cereus_and_escherichia_coli/links/59e74a9daca272e940e0979f/Antibacterial-activity-of-chitosan-and-hydrolyzed-coconut-oil-and-their-combination-against-bacillus-cereus-and-escherichia-coli.pdf>. Acesso em: 16 out. 2022.

TANGWATCHARIN, P.; KHOPAIBOOL, P. Activity of virgin coconut oil, lauric acid or monolaurin in combination with lactic acid against Staphylococcus aureus. Southeast Asian Journal of Tropical Medicine & Public Health, v. 43, n. 4, p. 969-985, 2012. Disponível em: <https://www.tm.mahidol.ac.th/seameo/2012-43-4/20-5197-12.pdf>. Acesso em: 13 jun. 2022.

TJIN, L. D.; SETIAWAN, A. S.; RACHMAWATI, E. Exposure time of virgin coconut oil against oral Candida albicans. Padjadjaran Journal of Dentistry, v. 28, n. 2, 2016. Disponível em: <http://journal.unpad.ac.id/pjd/article/view/13718>. Acesso em: 04 set. 2022.

TUBTIMSRI, S. et al. Formulation and Evaluation of Antifungal Shampoo Containing Modified Coconut Oil for Tinea capitis Treatment. Key Engineering Materials, v. 819, p. 130-135, 2019. Disponível em: < https://www.scientific.net/KEM.819.130 >. Acesso em: 17 out. 2022.

VAUGHN, A. R. et al. Natural oils for skin-barrier repair: ancient compounds now backed by modern science. American journal of clinical dermatology, v. 19, n. 1, p. 103-117, 2018. Disponível em: < https://pubmed.ncbi.nlm.nih.gov/28707186/ >. Acesso em: 15 jun. 2022.

WIDIANINGRUM, D. C.; NOVIANDI, C. T.; SALASIA, S. I. O. Antibacterial and immunomodulator activities of virgin coconut oil (VCO) against Staphylococcus aureus. Heliyon, v. 5, n. 10, p. e02612, 2019. Disponível em: <https://www.sciencedirect.com/science/article/pii/S2405844019362723>. Acesso em: 04 set. 2022.

YANG, D. et al. The antimicrobial activity of liposomal lauric acids against Propionibacterium acnes. Biomaterials, v. 30, n. 30, p. 6035-6040, 2009. Disponível em: <https://www.sciencedirect.com/science/article/abs/pii/S0142961209007479?via%3Dihub>. Acesso em: 14 jun. 2022.

ZEN, P. Z.; DESMIWARTI, D.; SYUKUR, S.. Effect of Virgin Coconut Oil in The Treatment of Leucorrhea Caused by Candida albicans Infection on Pregnant Women at Hospitals in Padang. Andalas Obstetrics And Gynecology Journal, v. 5, n. 2, p. 231-240, 2021. Disponível em: <http://jurnalobgin.fk.unand.ac.id/index.php/JOE/article/view/235>. Acesso em: 04 set. 2022.

ZIDNI, S. et al. The Effectiveness of Virgin Coconut Oil Application on Improving The Skin Integrity of Preterm Infants: Systematic Review and Metaanalysis with Neonatal Skin Condition Score as the Parameter. Dermatology Research, v. 4, n. 1, p. 1-9, 2022. Disponível em: <https://www.scivisionpub.com/pdfs/the-effectiveness-of-virgin-coconut-oil-application-on-improving-the-skin-integrity-of-preterm-infants-systematic-review-and-metaa-2032.pdf>. Acesso em: 15 jun. 2022.

Downloads

Publicado

12-07-2024

Como Citar

Wanderer, J., Bergamaschi, L. L., Müller, T., Heidrich, D., Rempel, C., & Maciel, M. J. (2024). Avaliação antimicrobiana do óleo de coco virgem frente a microrganismos patógenos de pele e a causadores de infecção urinária. Revista Sustinere, 12(1), 38–52. https://doi.org/10.12957/sustinere.2024.73109