Serum vitamin D levels are correlated with cholesterol and not with body composition in individuals with type 2 diabetes mellitus and overweight

Authors

  • Mauro Celso de Souza Universidade Federal de Santa Catarina, Programa de Residência Integrada Multiprofissional em Saúde. Florianópolis, SC, Brasil. https://orcid.org/0000-0003-4988-2879
  • Giovanna Mozzaquattro Nascimento Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Nutrição. Florianópolis, SC, Brasil. https://orcid.org/0000-0001-8472-3545
  • Júlia Pessini Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Nutrição. Florianópolis, SC, Brasil. https://orcid.org/0000-0002-9522-5629
  • Simone Vande Sande-Lee Universidade Federal de Santa Catarina, Departamento de Clínica Médica. Florianópolis, SC, Brasil. https://orcid.org/0000-0002-5592-1603
  • Marcelo Fernando Ronsoni Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Ciências Médicas. Florianópolis, SC, Brasil. https://orcid.org/0000-0003-1187-9842
  • Erasmo Benicio Santos de Moraes Trindade Universidade Federal de Santa Catarina, Departamento de Nutrição. Florianópolis, SC, Brasil.

DOI:

https://doi.org/10.12957/demetra.2025.84778

Keywords:

Diabetes Mellitus. Type 2. Overweight. Obesity. Vitamin D. Cholesterol.

Abstract

Introduction: vitamin D (25OHD) plays an important role in carbohydrate and lipid metabolism. Vitamin D deficiency is frequently found in individuals with metabolic disorders. It is necessary to identify how serum levels of 25OHD correlate with these indicators in individuals with type 2 diabetes mellitus (T2DM) and excess weight. Objective: to analyze the correlation between 25OHD and body composition, anthropometric, and biochemical indicators in individuals with T2DM and excess weight. Métodos: cross-sectional study conducted at the University Hospital of Florianópolis, Brazil, in individuals with T2DM and excess weight. Body composition was determined by dual-energy X-ray absorptiometry. Anthropometric data were measured by standardized techniques. Biomarkers were analyzed from a serum sample. The correlation between 25OHD and the outcomes was verified using Spearman's correlation. Results: 20 individuals with 35 to 75 years old, of which 55% were female. Preserved muscle compartments were observed according to the appendicular muscle mass index, along with a high percentage of body fat in both sexes. Fifty percent of the individuals had vitamin D deficiency and 75% used supplementation. An inverse correlation was observed between 25OHD and total cholesterol (r= -0.52; p= 0.02) and non-HDL-c (r= -0.47 p= 0.04). Conclusion: The 25OHD levels are associated with the lipid profile of individuals with type 2 diabetes and overweight, showing an inverse correlation.

Downloads

Download data is not yet available.

References

1. International Diabetes Federation. IDF Diabetes Atlas. 10th ed. [Internet]. Brussels: IDF; 2021. [acesso em 20 out 2023]. Disponível em: https://www.diabetesatlas.org

2. GBD 2015 Obesity Collaborators. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. New England Journal of Medicine. 2017;377:13-27. https://doi.org/10.1056/NEJMoa1614362

3. Boden G. Obesity, insulin resistance, and free fatty acids. Curr Opin Endocrinol Diabetes Obes. 2011;18:139-143. http://dx.doi.org/10.1097/MED.0b013e3283444b09

4. Torres S, Fabersani E, Marquez A, Gauffin-Cano P. Adipose tissue inflammation and metabolic syndrome. The proactive role of probiotics. European Journal of Nutrition. 2019;58:27-43. https://doi.org/10.1007/s00394-018-1790-2

5. McNelis JC, Olefsky JM. Macrophages, Immunity, and Metabolic Disease. Immunity.2014;41:36-48. https://doi.org/10.1016/j.immuni.2014.05.010

6. Martini LA, Catania AS, Ferreira SRG. Role of vitamins and minerals in prevention and management of type 2 diabetes mellitus. Nutrition Reviews. 2010;68:341-354. https://doi.org/10.1111/j.1753-4887.2010.00296.x

7. Galușca D, Popoviciu MS, Babeș EE, Vidican M, Zaha AA, Babeș VV, et al. Vitamin D Implications and Effect of Supplementation in Endocrine Disorders: Autoimmune Thyroid Disorders (Hashimoto’s Disease and Graves Disease). Diabetes Mellitus and Obesity. Medicina (Lithuania). 2022;58(2):194. https://doi.org/10.3390/medicina58020194

8. Walsh JS, Evans AL, Bowles S, Naylor KE, Jones KS, Schoenmakers I, et al. Free 25-hydroxyvitamin D is low in obesity, but there are no adverse associations with bone health. American Journal of Clinical Nutrition. 2016;103:1465-1471. https://doi.org/10.3945/ajcn.115.120139

9. Siranaula GMF, Rosales CGC, Sarez CMT. Role of vitamin D in patients with type 2 diabetes mellitus. Salud, Ciencia y Tecnologia. 2022;2(S1):202. https://doi.org/10.56294/saludcyt2022202

10. Turkes GF, Uysal S, Demir T, Demiral Y, Pamuk BO, Yılmaz H, et al. Associations Between Bioavailable Vitamin D and Remnant Cholesterol in Patients with Type 2 Diabetes Mellitus. Cureus. 2021;13(2). https://doi.org/10.7759/cureus.13248

11. Ribeiro CI, Nobre EL, Martins-Martins J. A Vitamina D na Diabetes Mellitus Tipo 2. Revista Portuguesa de Diabetes. 2021;16(1):13-24.

12. Papaioannou I, Pantazidou G, Kokkalis Z, Georgopoulos N, Jelastopulu E. Vitamin D Deficiency in Elderly with Diabetes Mellitus Type 2: A Review. Cureus. 2021;5;13(1). https://doi.org/10.7759/cureus.12506.

13. Brasil. Resolução nº 466, de 12 de dezembro de 2012. Dispõe sobre diretrizes e normas regulamentadoras de pesquisas envolvendo seres humanos. Diário Oficial da República Federativa do Brasil, Brasília, DF [Internet]. 2013 Jun 13 [acesso em 20 out 2023]. Disponível em: http://bit.ly/1mTMIS3

14. World Health Organization. Waist circumference and waist-hip ratio: report of a WHO expert consultation, Geneva, 8-11 December 2008. World Health Organization, 2011.

15. World Health Organization. Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee. Geneva: World Health Organization. 1995;854:1-452.

16. World Health Organization. Obesity: preventing and managing the global epidemic: report of a WHO consultation. Geneva: World Health Organization. 2000.

17. Gould H, Brennan SL, Kotowicz MA, Nicholon GC, Pasco AP. Total and appendicular lean mass reference ranges for Australian men and women: The Geelong osteoporosis study. Calcif Tissue Int.2014;94:363-372. https://doi.org/10.1007/s00223-013-9830-7

18. Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, et al. Epidemiology of Sarcopenia among the Elderly in New Mexico. Am J Epidemiol. 1998;147(8):755-63. https://doi.org/10.1093/oxfordjournals.aje.a00977

19. Lohman TG. Advances in body composition assessment. Champaign, IL: Human Kinetics Publishers [Internet]. 1992 [acesso em 25 out 2023]. Disponível em: https://www.scielosp.org/pdf/csp/1993.v9suppl1/S116-S117/en

20. World Health Organization. Diretrizes da OMS para a tiragem de sangue: boas práticas em flebotomia. World Health Organization, 2010.

21. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the Concentration of Low Density Lipoprotein Cholesterol in Plasma, Without Use of the Preparative Ultracentrifuge. Clin Chem. 1972;18(6). https://doi.org/10.1093/clinchem/18.6.499

22. Pititto B, Dias M, Moura F, Lamounier R, Calliari S, Bertoluci M. Metas no tratamento do diabetes. Diretriz Oficial da Sociedade Brasileira de Diabetes (2022) [Internet]. São Paulo: SBD; 2023 [acesso em 26 out 2023]. https://doi.org/10.29327/557753.2022-3, ISBN: 978-85-5722- 906-8.

23. Geloneze B, Vasques ACJ, Stabe CFC, Pareja JC, Rosado LEFPL, Queiroz EC, et al. HOMA1-IR and HOMA2-IR indexes in identifying insulin resistance and metabolic syndrome – Brazilian Metabolic Syndrome Study (BRAMS). Arq Bras Endocrinol Metab. 2009;53(2):281–7. https://doi.org/10.1590/S0004-27302009000200020

24. Geloneze B, Repetto EM, Geloneze SR, Tambascia MA, Ermetice MN. The threshold value for insulin resistance (HOMA-IR) in an admixture population. IR in the Brazilian Metabolic Syndrome Study. Diabetes Res Clin Pract. 2006;72(2):219–20. https://doi.org/10.1016/j.diabres.2005.10.017

25. Faludi AA, Izar MCO, Saraiva JFK, Chacra APM, Bianco HT, Afiune A Neto, et al. Atualização da Diretriz Brasileira de Dislipidemias e Prevenção da Aterosclerose – 2017. Arq Bras Cardiol. 2017;109(5 Suppl 1):1–76.

26. Moreira CA, Ferreira CEDS, Madeira M, Silva BCCS, Maeda SS, Batista MC, et al. Reference values of 25-hydroxyvitamin D revisited: a position statement from the Brazilian Society of Endocrinology and Metabolism (SBEM) and the Brazilian Society of Clinical Pathology/Laboratory Medicine (SBPC). Arch Endocrinol Metab. 2020;64(4):462–78. https://doi.org/10.20945/2359-3997000000258

27. Mukaka MM. Statistics Corner: a guide to appropriate use of correlation coefficient in medical research. Malawi Med J. 2012;24(3):69–71.

28. Mohamad MI, El-Sherbeny EE, Bekhet MM. The effect of vitamin D supplementation on glycemic control and lipid profile in patients with type 2 diabetes mellitus. J Am Coll Nutr. 2016;35(5):399–404. https://doi.org/10.1080/07315724.2015.1026427

29. Alotaibi AB, Melnasieh A, Alduraibi K. The correlation between vitamin D levels and the glycemic marker HbA1c and lipid profile in patients with type 2 diabetes mellitus: a study at the King Saud Medical City, Riyadh. Cureus. 2024;16(4):e57927. https://doi.org/10.7759/cureus.57927

30. Barchetta I, Angelico F, Del Ben M, Baroni MG, Pozzilli P, Morini S, Cavallo MG. Strong association between non-alcoholic fatty liver disease (NAFLD) and low 25(OH) vitamin D levels in an adult population with normal serum liver enzymes. BMC Med. 2011;9:85. https://doi.org/10.1186/1741-7015-9-85

31. Baker JF, Mehta NN, Baker DG, Toedter G, Shults J, Von Feldt JM, et al. Vitamin D, metabolic dyslipidemia, and metabolic syndrome in rheumatoid arthritis. Am J Med. 2012;125(10):1036.e9–1036.e15. https://doi.org/10.1016/j.amjmed.2012.01.025

32. Skaaby T, Husemoen LL, Martinussen T, Thyssen JP, Melgaard M, Thuesen BH, et al. Vitamin D status, filaggrin gene type, and cardiovascular risk factors: a Mendelian randomization approach. PLoS One. 2013;8(2):e57647. https://doi.org/10.1371/journal.pone.0057647

33. Reczkowicz J, Mika A, Antosiewicz J, Kortas J, Proczko-Stepaniak M, Śledziński T, et al. Bariatric surgery induced changes in blood cholesterol are modulated by vitamin D status. Nutrients. 2022;14(10):2000. https://doi.org/10.3390/nu14102000

34. El-Fakhri N, McDevitt H, Shaikh MG, Halsey C, Ahmed SF. Vitamin D and its effects on glucose homeostasis, cardiovascular function and immune function. Horm Res Paediatr. 2014;81(6):363–78. https://doi.org/10.1159/000357731.

35. Samuel L, Borrell LN. The effect of body mass index on optimal vitamin D status in U.S. adults: The National Health and Nutrition Examination Survey 2001–2006. Ann Epidemiol. 2013;23:409–14. https://doi.org/10.1016/j.annepidem.2013.05.011

36. Macdonald HM, Mavroeidi A, Barr RJ, Black AJ, Fraser WD, Reid DM. Vitamin D status in post menopausal women living at higher latitudes in the UK in relation to bone health, overweight, sunlight exposure and dietary vitamin D. Bone. 2008;42:996–1003.

37. Greco EA, Lenzi A, Migliaccio S. Role of hypovitaminosis D in the pathogenesis of obesity-induced insulin resistance. Nutrients. 2019;11(7):1506. https://doi.org/10.3390/nu11071506

38. Misnikova IV, Kovaleva YA, Polyakova EY, Dreval AV. Assessment of muscle and fat mass in type 2 diabetes patients by dual-energy X-ray absorptiometry. J Gen Health. 2021;1(3):364–72. https://doi.org/10.47829/JJGH.2020.5702

39. Gupta P, Lanca C, Gan ATL, Soh P, Thakur S, Tao Y, et al. The association between body composition using dual-energy X-ray absorptiometry and type 2 diabetes: a systematic review and meta-analysis of observational studies. Sci Rep. 2019;9(1):12634. https://doi.org/10.1038/s41598- 019-49162-5

40. Cortet B, Lucas S, Legroux-Gerot I, Penel G, Chauveau C, Paccou J. Bone disorders associated with diabetes mellitus and its treatments. Joint Bone Spine. 2019;86:315–20. https://doi.org/10.1016/j.jbspin.2018.08.002

41. Evans AL, Paggiosi MA, Eastell R, Walsh JS. Bone density, microstructure, and strength in obese and normal weight men and women in younger and older adulthood. J Bone Miner Res. 2015;30:920–8. https://doi.org/10.1002/jbmr.2407

42. Pritchard JM, Giangregorio LM, Atkinson SA, Beattie KA, Inglis D, Ioannidis G, et al. Changes in trabecular bone microarchitecture in post menopausal women with and without type 2 diabetes: a two-year longitudinal study. BMC Musculoskelet Disord. 2013;14:114. https://doi.org/10.1186/1471-2474-14-114

43. Conte C, Epstein S, Napoli N. Insulin resistance and bone: a biological partnership. Acta Diabetol. 2018;55:305–14. https://doi.org/10.1007/s00592-018-1101-7

44. Vigevano F, Gregori G, Colleluori G, Chen R, Autemrongsawat V, Napoli N. In men with obesity, T2DM is associated with poor trabecular microarchitecture and bone strength and low bone turnover. J Clin Endocrinol Metab. 2021;106:1362–76. https://doi.org/10.1210/clinem/dgab061

45. Cipriani C, Colangelo L, Santori R, Renella M, Mastrantonio M, Minisola S, et al. The interplay between bone and glucose metabolism. Front Endocrinol (Lausanne).2020;11:122. https://doi.org/10.3389/fendo.2020.00122

Published

2025-11-14

How to Cite

1.
de Souza MC, Mozzaquattro Nascimento G, Pessini J, Vande Sande-Lee S, Fernando Ronsoni M, Santos de Moraes Trindade EB. Serum vitamin D levels are correlated with cholesterol and not with body composition in individuals with type 2 diabetes mellitus and overweight. DEMETRA [Internet]. 2025 Nov. 14 [cited 2025 Nov. 23];20:e84778. Available from: https://www.e-publicacoes.uerj.br/demetra/article/view/84778

Issue

Section

Clinical Nutrition