Armazenamento congelado do caqui: estratégia de prevenção de perdas pós-colheita alinhada aos preceitos da economia circular
DOI:
https://doi.org/10.12957/demetra.2025.80525Palavras-chave:
Diospyroskaki. Compostos bioativos. Armazenamento congelado. Ingredientes inovadores. Sistemas alimentares sustentáveis.Resumo
Introdução: O caqui (Diospyroskaki) é uma fruta de elevado valor nutricional e rica em compostos bioativos com potencial para o desenvolvimento de novos produtos de alto valor agregado. No entanto, por ser sazonal, apresenta perdas significativas no período pós-colheita. Assim, é essencial investir em tecnologias que prolonguem sua vida útil e possibilitem sua disponibilidade na entressafra. Objetivo: Avaliar os efeitos do armazenamento do caqui por congelamento a -18 °C por três meses (P3M) e por um ano (P1Y). Métodos: Foram analisadas a composição química, o perfil de compostos voláteis e a potencial atividade biológica do caqui. Resultados: Não foram observadas diferenças nos teores de cinzas, lipídios, proteínas e minerais entre os períodos avaliados. Houve redução no teor de umidade em P1Y. As razões entre sólidos solúveis totais (°Brix) e acidez titulável total foram de 48,23 (P3M) e 57,84 (P1Y). O armazenamento por um ano afetou a fração volátil. Compostos como tetracosano, 2-etil-1-hexanol, 2,4-dimetil-3-hexanona, o-cimeno, α-terpineol e timol foram detectados apenas em P3M. Verificou-se também redução significativa no teor de fenólicos totais e na capacidade antioxidante (IC50 – ABTS) em P1Y. Os extratosautoclaves de P3M e P1Y apresentaram efeito citotóxico (redução de 30-40% do Alamar Blue®) nas linhagens celulares MCF-7 e MDA-MB-231. Conclusão: O congelamento preserva a composição centesimal, o perfil de mineral e as propriedades físico-químicas do caqui, viabilizando seu uso na entressafra. No entanto, o armazenamento por um ano impacta negativamente os compostos voláteis e antioxidantes, o que limita sua aplicação para a obtenção de aditivos naturais. A extração em autoclave mostrou-se eficaz na eluição de compostos com efeito citotóxico, indicando potencial para investigações futuras.
Downloads
Referências
1. Jia Y, Wang Z, Liang X, Tu C, Khalifa I, Wang C, et al. Unlocking the potential of persimmons: A comprehensive review on emerging technologies for post-harvest challenges, processing innovations, and prospective applications. Food Chem 2024;459:140344. https://doi.org/10.1016/j.foodchem.2024.140344.
2. Murali P, Hamid, Shams R, Dar AH. Insights on nutritional profile, nutraceutical components, pharmacological potential, and trending utilization of persimmon cultivars: A review. Food Chemistry Advances 2023;3:100431. https://doi.org/10.1016/j.focha.2023.100431.
3. FAO. Food and Agriculture Organization Corporate Statistical Database (FAOSTAT) 2025. [Acesso 16 fev 2025]. Disponível em: https://www.fao.org/faostat/en/#home
4. Saleem MS, Ejaz S, Anjum MA, Nawaz A, Naz S, Hussain S, et al. Postharvest application of gum Arabic edible coating delays ripening and maintains quality of persimmon fruits during storage. J Food Process Preserv 2020;44:1-13. https://doi.org/10.1111/jfpp.14583.
5. González CM, Llorca E, Quiles A, Hernando I, Moraga G. Water sorption and glass transition in freeze-dried persimmon slices. Effect on physical properties and bioactive compounds. LWT - Food Science and Technology 2020;130:109633. https://doi.org/10.1016/j.lwt.2020.109633.
6. Saleem MS, Ejaz S, Anjum MA, Ali S, Hussain S, Nawaz A, et al. Aloe vera gel coating delays softening and maintains quality of stored persimmon (Diospyros kaki Thunb.) Fruits. J Food Sci Technol 2022;59:3296-306. https://doi.org/10.1007/s13197-022-05412-5.
7. Santos CM, Abbade EB, Fai AEC. Assessing land, nutrients and monetary value associated with postharvest loss of persimmon in Brazil: pathways toward sustainability in agri-food systems. British Food Journal 2023. https://doi.org/10.1108/BFJ-10-2022-0895.
8. Khan MJ, Ayub Q, Hussain I, Mehmood A, Arif N, Mehmood S, et al. Responses of persimmon (Diospyros kaki) fruits to different fruit coatings during post harvest storage at ambient temperature. Journal of Pure and Applied Agriculture 2020;5:26-32.
9. de Jesus MS, Araujo HCS, Denadai M, Sandes RDD, Nogueira JP, Leite Neta MTS, et al. Effect of different drying methods on the phenolic and volatile compounds of persimmon (Diospyros kaki L.). Journal of Food Measurement and Characterization 2023;17:2576-94. https://doi.org/10.1007/s11694-022-01803-6.
10. Rockett F, Schmidt H, Rodrigues E, Flôres S, Rios A. Application of refrigeration and packing can extend Butiá fruit shelf life. Food Biosci2021;42:101162. https://doi.org/10.1016/j.fbio.2021.101162.
11. Das PR, Eun J-B. Removal of astringency in persimmon fruis (Diospyros kaki) subjected to different freezing temperature treatments. J Food Sci Technol 2021;58:3154-63. https://doi.org/10.1007/s13197-020-04818-3.
12. Zhan X, Zhu Z, Sun DW. Effects of pretreatments on quality attributes of long-term deep frozen storage of vegetables: a review. Crit Rev Food Sci Nutr2018;59:743-57. https://doi.org/10.1080/10408398.2018.1496900.
13. Stevanović SM, Petrović TS, Marković DD, Milovančević UM, Stevanović S V., Urošević TM, et al. Changes of quality and free radical scavenging activity of strawberry and raspberry frozen under different conditions. J Food Process Preserv 2022;46. https://doi.org/10.1111/jfpp.15981.
14. Adainoo B, Crowell B, Thomas AL, Lin C-H, Cai Z, Byers P, et al. Physical characterization of frozen fruits from eight cultivars of the North American pawpaw (Asimina triloba). Front Nutr 2022;9. https://doi.org/10.3389/fnut.2022.936192.
15. Hosseininejad S, González CM, Hernando I, Moraga G. Valorization of Persimmon Fruit Through the Development of New Food Products. Food Science and Technology 2022;2:1-10. https://doi.org/10.3389/frfst.2022.914952.
16. Conesa C, Laguarda-Miró N, Fito P, Seguí L. Evaluation of Persimmon (Diospyros kaki Thunb. cv. Rojo Brillante) Industrial Residue as a Source for Value Added Products. Waste Biomass Valorization 2019;11:3749-60. https://doi.org/10.1007/s12649-019-00621-0.
17. Banerjee J, Singh R, Vijayaraghavan R, MacFarlane D, Patti AF, Arora A. Bioactives from fruit processing wastes: Green approaches to valuable chemicals. Food Chem 2017;225:10-22. https://doi.org/10.1016/j.foodchem.2016.12.093.
18. Chen J, Du J, Ge Z Zhen, Zhu W, Nie R, Li C Mei. Comparison of sensory and compositions of five selected persimmon cultivars (Diospyros kaki L.) and correlations between chemical components and processing characteristics. J Food Sci Technol 2016;53:1597-607. https://doi.org/10.1007/s13197-015-2102-y.
19. Instituto Adolfo Lutz. Métodos Físico-Químicos para Análise de Alimentos -4a Edição 1a Edição Digital. Instituto Adolfo Lutz 2008;IV:1018.
20. Radulović N, Blagojević P, Palić R. Volatiles of the grapehybrid cultivar othello (vitisvinifera x (vitislabrusca x vitis riparia)) cultivated in Serbia. Journal of Essential Oil Research2010;22:616-9. https://doi.org/10.1080/10412905.2010.9700415.
21. Rufino M do SM, Alves RE, Brito ES, Morais SM, Sampaio C de G, Pérez-Jiménez J, et al. Metodologia Científica: Determinação da Atividade Antioxidante Total em Frutas pela Captura do Radical Livre DPPH. Comunicado Técnico Embrapa 2007;127:1-4.
22. Hamauzu Y, Iijima E. Polyphenolic composition and antioxidative activity of apple flesh extracts. Journal of the Japanese Society for Food Science and Technology- Nippon Shokuhin Kagaku Kogaku Kaishi1999;46:645-651.
23. Brito TBN, R.S. Lima L, B. Santos MC, A. Moreira RF, Cameron LC, C. Fai AE, et al. Antimicrobial, antioxidant, volatile and phenolic profiles of cabbage-stalk and pineapple-crown flour revealed by GC-MS and UPLC-MSE. Food Chem 2021;339:127882. https://doi.org/10.1016/j.foodchem.2020.127882.
24. Suh S, Kim YE, Yang HJ, Ko S, Hong GP. Influence of autoclave treatment and enzymatic hydrolysis on the antioxidant activity of Opuntia ficus-indica fruit extract. Food Sci Biotechnol2017;26:581-90. https://doi.org/10.1007/s10068-017-0085-3.
25. Ahmed SA, Gogal RM, Walsh JE. A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to [3H]thymidine incorporation assay. J Immunol Methods 1994;170:211-24. https://doi.org/10.1016/0022-1759(94)90396-4.
26. Grover Y, Negi PS. Recent developments in freezing of fruits and vegetables: Striving for controlled ice nucleation and crystallization with enhanced freezing rates. J Food Sci 2023;88:4799-826. https://doi.org/10.1111/1750-3841.16810.
27. Kmiecik W, Lisiewska Z, Korus A. Retention of mineral constituents in frozen brassicas depending on the method of preliminary processing of the raw material and preparation of frozen products for consumption. European Food Research and Technology 2007;224:573-9. https://doi.org/10.1007/s00217-006-0337-6.
28. López MAA, Rojas RM, Cosano GZ. Mineral composition of frozen green asparagus. European Food Research and Technology 2004;219:260-4. https://doi.org/10.1007/s00217-004-0928-z.
29. Singh A, Swami S, Panwar NR, Kumar M, Shukla AK, Rouphael Y, et al. Development Changes in the Physicochemical Composition and Mineral Profile of Red-Fleshed Dragon Fruit Grown under Semi-Arid Conditions. Agronomy 2022;12:355. https://doi.org/10.3390/agronomy12020355.
30. Tardugno R, Gervasi T, Nava V, Cammilleri G, Ferrantelli V, Cicero N. Nutritional and mineral composition of persimmon fruits (Diospyros kaki L.) from Central and Southern Italy. Nat Prod Res 2022;36:5168-73. https://doi.org/10.1080/14786419.2021.1921768.
31. Brasil. Ministério da saúde, Agência Nacional de Vigilância Sanitária (ANVISA), Instrução Normativa-IN No 75, de 8 de outubro de 2020- 2020; [Acesso 16 fev 2025]. Disponível em:https://www.in.gov.br/en/web/dou/-/instrucao-normativa-in-n-75-de-8-de-outubro-de-2020-282071143 32
32. Militão A de O, da Silva TI, do Nascimento AM, da Costa FB, de Castro AKG, Macêdo LF, et al. Storage increases soluble sugars and decreases bioactive compounds in wild passion fruit (Passiflora cincinnata). Hortic Environ Biotechnol 2025. https://doi.org/10.1007/s13580-025-00676-0.
33. Chassagne-Berces S, Fonseca F, Citeau M, Marin M. Freezing protocol effect on quality properties of fruit tissue according to the fruit, the variety and the stage of maturity. LWT - Food Science and Technology 2010;43:1441-9. https://doi.org/10.1016/j.lwt.2010.04.004.
34. Wang M, Jin S, Ding Z, Xie J. Effects of Different Freezing Methods on Physicochemical Properties of Sweet Corn during Storage. Int J Mol Sci 2022;24:389. https://doi.org/10.3390/ijms24010389.
35. Pereira APA, Angolini CFF, Paulino BN, Lauretti LBC, Orlando EA, Silva JGS, et al. A comprehensive characterization of Solanum lycocarpum St. Hill and Solanum oocarpumm Sendtn: Chemical composition and antioxidant properties. Food Research International 2018:1-9. https://doi.org/10.1016/j.foodres.2018.09.054.
36. Tan XY, Misran A, Daim LDJ, Ding P, Pak‐Dek MS. Changes in the volatile profiles, organic acid contents, and sugar compositions of durian pulps during long‐term frozen storage. J Food ProcessPreserv 2021;45. https://doi.org/10.1111/jfpp.15285.
37. Amorim C, Filho EGA, Rodrigues HTS, Bender RJ, Canuto KM, Garruti DS, et al. Volatile compounds associated to the loss of astringency in ‘RamaForte’ persimmon fruit. Food Research International2020;136:109570. https://doi.org/10.1016/j.foodres.2020.109570.
38. Martineli M, Alves AAR, Figueiredo GM de, Rezende CM de, Fonseca MJ de O. Caqui cv. “Mikado”: análise de compostos voláteis em frutos adstringentes e destanizados. Ciência Rural 2013;43:1516-21. https://doi.org/10.1590/s0103-84782013000800028.
39. Sonmezdag AS, Kelebek H, Selli S. Characterization of aroma-active and phenolic profiles of wild thyme (Thymus serpyllum) by GC-MS-Olfactometry and LC-ESI-MS/MS. J Food Sci Technol 2016;53:1957-65. https://doi.org/10.1007/s13197-015-2144-1.
40. Souza WFM, Mariano XM, Isnard JL, Souza GS, Gomes AL de S, Carvalho RJT, et al. Evaluation of the volatile composition, toxicological and antioxidant potentials of the essential oils and teas of commercial Chilean boldo samples. Food Research International 2019. https://doi.org/10.1016/j.foodres.2018.12.059.
41. Veverka L, Jelinkova M, Hron K, Balik J, Stávek J, Barták P. Chemical markers in the aroma profiles of south Moravian red wine distillates. Czech Journal of Food Sciences 2012;30:369-76.
42. Santos NC, Almeida RLJ, da Silva GM, de Alcântara Silva VM, de Alcântara Ribeiro VH, de Oliveira Brito AC, et al. Impact of pretreatments with ethanol and freezing on drying slice papaya: drying performance and kinetic of ultrasound‐assisted extraction of phenolics compounds. J Sci Food Agric 2023;103:125-34. https://doi.org/10.1002/jsfa.12119.
43. Jang IC, Oh WG, Lee SC, Ahn GH, Lee JH. Antioxidant activity of 4 cultivars of persimmon fruit. Food Sci Biotechnol 2011;20:71-7. https://doi.org/10.1007/s10068-011-0010-0.
44. Divakaran D, Lakkakula JR, Thakur M, Kumawat MK, Srivastava R. Dragon fruit extract capped gold nanoparticles: Synthesis and their differential cytotoxicity effect on breast cancer cells. Mater Lett 2019;236:498-502. https://doi.org/10.1016/j.matlet.2018.10.156.
45. Guimarães D de AB, De Castro D dos SB, Oliveira FL de, Nogueira EM, Silva MAM da, Teodoro AJ. Pitaya Extracts Induce Growth Inhibition and Proapoptotic Effects on Human Cell Lines of Breast Cancer via Downregulation of Estrogen Receptor Gene Expression. Oxid Med Cell Longev 2017;2017:1-13. https://doi.org/10.1155/2017/7865073.
46. Sanusi I, Aruwajoye G, Revaprasadu N, Sewsynker-Sukai Y, Meyer EL, Kana EBG. A novel autoclave-assisted nanoparticle pre-treatment for improved sugar recovery from potato peel waste: process optimisation, nanoparticle recyclability and bioethanol production. Biomass Convers Biorefin 2024;14:13941-53. https://doi.org/10.1007/s13399-022-03574-y.
47. Zheng H, Sun Y, Zheng T, Zeng Y, Fu L, Zhou T, et al. Effects of shear emulsifying/ball milling/autoclave modification on structure, physicochemical properties, phenolic compounds, and antioxidant capacity of lotus (Nelumbo) leaves dietary fiber. Front Nutr 2023;10. https://doi.org/10.3389/fnut.2023.1064662.
48. Oliveira AMB, Viganó J, Sanches VL, Rostagno MA, Martínez J. Extraction of potential bioactive compounds from industrial Tahiti lime (Citrus latifólia Tan.) by-product using pressurized liquids and ultrasound-assisted extraction. Food Research International 2022;157:111381. https://doi.org/10.1016/j.foodres.2022.111381.
49. Feng Q, Zhang S, Lin J, Yang J, Zhang Y, Shen Q, et al. Valorization of barley (Hordeum vulgare L.) brans from the sustainable perspective: A comprehensive review of bioactive compounds and health benefits with emphasis on their potential applications. Food Chem 2024;460:140772. https://doi.org/10.1016/j.foodchem.2024.140772.
50. Pagano I, Campone L, Celano R, Piccinelli AL, Rastrelli L. Green non-conventional techniques for the extraction of polyphenols from agricultural food by-products: A review. J Chromatogr A 2021;1651:462295. https://doi.org/10.1016/j.chroma.2021.462295.
51. Panda J, Amrit R, Mishra AK, Chakraborty A, Rustagi S, Nath PC, et al. Sustainable Valorization of Fruit and Vegetable Waste for Bioactive Compounds: Advancing Functional Food and Wellness. Waste Biomass Valorization 2025. https://doi.org/10.1007/s12649-025-02937-6.
52. Alu’datt MH, Rababah T, Tranchant CC, Al‐u’datt D, Gammoh S, Alrosan M, et al. Date palm (Phoenixdactylifera) bioactive constituents and their applications as natural multifunctional ingredients in health‐promoting foods and nutraceuticals: A comprehensive review. Compr Rev Food Sci Food Saf 2025;24. https://doi.org/10.1111/1541-4337.70084.
53. Akermi S, Chaari M, Elhadef K, Sharma A, Dey A, Choudhary A, et al. Bioactive compounds and cancer prevention: a nutritional approach. Unleashing the Power of Functional Foods and Novel Bioactives, Elsevier; 2025, p. 257-70. https://doi.org/10.1016/B978-0-443-28862-3.00013-3.
54. Ramadan M, El-Ghorab A, Ghanem K. Volatile compounds, antioxidants, and anticancer activities of Cape gooseberry fruit (Physalis peruviana L.): An in-vitro study. Journal of The Arab Society for Medical Research 2016;10:56-64. https://doi.org/10.4103/1687-4293.175556.
55. Jo K, Lee J, Lee S, Park H. Anticancer activity of persimmon (Diospyros kaki L.) calyx extracts on human cancer cells. Journal of Medicinal Plants2011;5:2546-50.
56. Gloria NF, Soares N, Brand C, Oliveira FL, Borojevic R, Teodoro AJ. Lycopene and Beta-carotene Induce Cell-Cycle Arrest and Apoptosis in Human Breast Cancer Cell Lines. Anticancer Res 2014;34:1377-86.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Carollyne Maragoni-Santos, Matheus Mikio Takeyama , Julia Rabelo Vaz Matheus, Maria Elena Arcanjo , Danielly Cristiny Ferraz da Costa , Mônica Regina da Costa Marques , Ricardo Felipe Alves Moreira , Ana Elizabeth Cavalcante Fai

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
DECLARAÇÃO DE RESPONSABILIDADE
Título do manuscrito: __________________________________________________________________
1. Declaração de responsabilidade
Certifico minha participação no trabalho acima intitulado e torno pública minha responsabilidade pelo seu conteúdo.
Certifico que o manuscrito representa um trabalho original e que nem este ou quaisquer outros trabalhos de minha autoria, em parte ou na integra, com conteúdo substancialmente similar, foi publicado ou foi enviado a outra revista.
Em caso de aceitação deste texto por parte de Demetra: Alimentação, Nutrição & Saúde, declaro estar de acordo com a política de acesso público e de direitos autorais adotadas por Demetra, que estabelece o seguinte: (a) os autores mantêm os direitos autorais e concedem à revista o direito de primeira publicação, sendo o trabalho simultaneamente licenciado sob a Creative Commons Attribution License, que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial neste periódico; (b) os autores têm autorização para assumir contratos adicionais separadamente, para distribuição não exclusiva da versão do trabalho publicada nesta revista (p.ex., publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista; e (c) os autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (p.ex., em repositórios institucionais ou em sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.
2. Conflito de interesses
Declaro não ter conflito de interesses em relação ao presente artigo.
Data, assinatura e endereço completo de todos os autores.