Estudo comparativo da composição centesimal, propriedades físico-químicas e tecnológicas do subproduto do café Arábica (casca e polpa)

Autores

DOI:

https://doi.org/10.12957/demetra.2025.82196

Palavras-chave:

Café. Fibra alimentar. Proteína. Novo ingrediente alimentar. Sustentável.

Resumo

O Brasil, maior produtor mundial de café Arábica, gera quantidades significativas de subprodutos sólidos durante o processamento. Esses subprodutos, geralmente descartados, representam potencial fonte de nutrientes valiosos para a indústria alimentícia. Existem dois métodos principais de processamento, seco e úmido, que geram subprodutos distintos: casca (seco) e polpa (úmido). Esses subprodutos possuem propriedades nutricionais e tecnológicas favoráveis para aplicações alimentícias. Este estudo teve como objetivo avaliar a composição centesimal (umidade, proteínas, lipídeos, fibras, cinzas), propriedades físico-químicas e tecnológicas de farelos derivados de subprodutos do café Arábica brasileiro (safras 2020-2022) obtidos a partir dos métodos de processamento seco e úmido. Os resultados mostraram farelos ricos em fibras alimentares (30-60%) e proteínas (8-11%), com baixo teor de gordura (0,66-5%). Além disso, os farelos apresentaram propriedades físico-químicas e tecnológicas promissoras para uso alimentar. Esses achados sugerem que os subprodutos do café possuem um potencial significativo como um novo ingrediente alimentar sustentável, promovendo o enriquecimento de produtos e contribuindo para a sustentabilidade da cadeia da indústria cafeeira.

Downloads

Não há dados estatísticos.

Referências

1. Oliveira LS, Franca AS. An overview of the potential uses for coffee husks. In: Coffee in health and disease prevention. 2015. p. 283-91. https://doi.org/10.1016/B978-0-12-409517-5.00031-0

2. Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch-Ernst KI, Knutsen HK, et al. EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA). Safety of dried coffee husk (cascara) from Coffea arabica L. as a Novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 2022;20(2). https://doi.org/10.2903/j.efsa.2022.7085

3. Durán CA, Tsukui A, Santos FKF, Martinez ST, Bizzo HR, Rezende CM. Coffee: general aspects and its use beyond beverage. Rev Virt Quím. 2017;9(1):107-34.

4. Mussatto SI, Machado EM, Martins S, Teixeira JA. Production, composition, and application of coffee and its industrial residues. Food Bioprocess Technol. 2011;4:661-72. https://doi.org/10.1007/s11947-011-0565-z

5. Murthy PS, Naidu MM. Sustainable management of coffee industry by-products and value addition—A review. Resour Conserv Recycl. 2012;66:45-58. https://doi.org/10.1016/j.resconrec.2012.06.005

6. Janissen B, Huynh T. Chemical composition and value-adding applications of coffee industry by-products: A review. Resour Conserv Recycl. 2018;128:110-7. https://doi.org/10.1016/j.resconrec.2017.10.001

7. Storck CR, Nunes GL, Oliveira BBD, Basso C. Folhas, talos, cascas e sementes de vegetais: composição nutricional, aproveitamento na alimentação e análise sensorial de preparações. Ciênc Rural. 2013;43:537-43. https://doi.org/10.1590/S0103-84782013000300027

8. Iriondo-DeHond A, Garcia NA, Fernandez-Gomez B, Guisantes-Batan E, Escobar FV, Blanch GP, et al. Validation of coffee by-products as novel food ingredients. Innov Food Sci Emerg Technol. 2019;51:194-204. https://doi.org/10.1016/j.ifset.2018.06.010

9. Brasil. Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa nº 8, de 2 de junho de 2005. Regulamento técnico de identidade e qualidade da farinha de trigo. Diário Oficial da República Federativa do Brasil, Brasília, DF. 2005 jun 3; Seção 1:91.

10. Institute Adolfo Lutz. Analytical norms of the Institute Adolfo Lutz (IAL) – Chemical and physical methods for food analysis. 4th ed. São Paulo; 2008.

11. Motarjemi Y. Codex Committee on nutrition and foods for special dietary uses. Food Control. 1991;2(3):185.

12. Robertson JA, de Monredon FD, Dysseler P, Guillon F, Amado R, Thibault JF. Hydration properties of dietary fiber and starch resistant: a European collaborative study. LWT-Food Sci Technol. 2000;33(2):72-9. https://doi.org/10.1006/fstl.1999.0595

13. Sangnark A, Noomhorm A. Effect of particle sizes on functional properties of dietary fiber prepared from sugarcane bagasse. Food Chem. 2003;80(2):221-9. https://doi.org/10.1016/S0308-8146(02)00257-1

14. American Association of Cereal Chemists (AACC). Approved methods of the AACC. 10th ed. St. Paul: AACC; 2000.

15. Brasil. Agência Nacional de Vigilância Sanitária – ANVISA. Resolução RDC nº 273, de 22 de setembro de 2005. Regulamento Técnico de Misturas para Preparo de Alimentos e Alimentos Prontos para Consumo. Diário Oficial da União, Brasília, DF. 2005 set 22.

16. Oluwajuyitan TD, Ijarotimi OS, Fagbemi TN, Oboh G. Blood glucose lowering, glycaemic index, carbohydrate-hydrolysing enzyme inhibitory activities of potential functional food from plantain, soy-cake, rice-bran and oat-bran flour blends. J Food Meas Charact. 2021;15(4):3761-9. https://doi.org/10.1007/s11694-021-00954-2

17. Gemechu FG. Embracing nutritional qualities, biological activities and technological properties of coffee byproducts in functional food formulation. Trends Food Sci Technol. 2020;104:235-61. https://doi.org/10.1016/j.tifs.2020.08.005

18. Toledo NMVD, Mondoni J, Harada-Padermo SDS, Vela-Paredes RS, Berni PRDA, Selani MM, Canniatti-Brazaca SG. Characterization of apple, pineapple, and melon by-products and their application in cookie formulations as an alternative to enhance the antioxidant capacity. J Food Process Preserv. 2019;43(9). https://doi.org/10.1111/jfpp.14100

19. Santos EM, de Macedo LM, Tundisi LL, Ataide JA, Camargo GA, Alves RC, et al. Coffee by-products in topical formulations: A review. Trends Food Sci Technol. 2021;111:280-91. https://doi.org/10.1016/j.tifs.2021.02.064

20. Gouvea BM, Torres C, Franca AS, Oliveira LS, Oliveira ES. Feasibility of ethanol production from coffee husks. Biotechnol Lett. 2009;31(9):1315-9. https://doi.org/10.1007/s10529-009-0023-4

21. Braham JE, Bressani R. Coffee pulp: composition, technology and use. Ottawa: IDRC; 1979. [cited 2024 Jul 9]. Available from: http://hdl.handle.net/10625/6006.

22. Marcal S, Pintado M. Mango peels as food ingredient/additive: nutritional value, processing, safety and applications. Trends Food Sci Technol. 2021;114:472-89. https://doi.org/10.1016/j.tifs.2021.06.012

23. European Parliament. Regulation (EC) No. 1924/2006 of the European Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods. Official Journal of the European Union. 2006 Dec 30; L404:9. [cited 2024 Jul 9]. Available from: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02006R1924-20121129.

24. Tavares JS, da Cunha Mendes M, Passos SR, de Assis Lourenço A, dos Anjos Pederzoli B, Soares CG, Botelho FT. Nutritional composition of bisnaguinha type breads and comparison with nutritional labeling legislation. Health Surveill Debate Soc Sci Technol. 2017;5(1):45-51. https://doi.org/10.3395/2317-269X.00797

25. Gornall J, Betts R, Burke E, Clark R, Camp J, Willett K, Wiltshire A. Implications of climate change for agricultural productivity in the early twenty-first century. Philos Trans R Soc Lond B Biol Sci. 2010;365(1554):2973-89. https://doi.org/10.1098/rstb.2010.0158

26. Holzkämper A, Calanca P, Fuhrer J. Analyzing climate effects on agriculture in time and space. Procedia Environ Sci. 2011;3:58-62. https://doi.org/10.1016/j.proenv.2011.02.011

27. Programa das Nações Unidas para o Meio Ambiente (PNUMA). O aumento alarmante da temperatura global [Internet]. 2024 [cited 2024 Jul 9]. Available from: https://www.unep.org/pt-br/noticias-e-reportagens/reportagem/o-aumento-alarmante-da-temperatura-global.

28. Da Matta FM, Ronchi CP, Maestri M, Barros RS. Ecophysiology of coffee growth and production. Braz J Plant Physiol. 2007;19:485-510. https://doi.org/10.1590/S1677-04202007000400014

29. Hoseini M, Cocco S, Casucci C, Cardelli V, Corti G. Coffee by-products derived resources: The review. Biomass Bioenergy. 2021;148:106009. https://doi.org/10.1016/j.biombioe.2021.106009

30. Velásquez S, Banchón C. Influence of pre- and post-harvest factors on the organoleptic and physicochemical quality of coffee: a short review. J Food Sci Technol. 2022;1-13. https://doi.org/10.1007/s13197-022-05569-z

31. Sancho SDO, da Silva ARA, Dantas ANDS, Magalhães TA, Lopes GS, Rodrigues S, et al. Characterization of the industrial residues of seven fruits and prospection of their potential application as food supplements. J Chem. 2015;2015:264284. https://doi.org/10.1155/2015/264284

32. Cangussu LB, Melo JC, Franca AS, Oliveira LS. Chemical characterization of coffee husks, a by-product of Coffea arabica production. Foods. 2021;10(12):3125. https://doi.org/10.3390/foods10123125

33. Almeida JDSO, Dias CO, Arriola ND, de Freitas BS, de Francisco A, Petkowicz CL, et al. Feijoa (Accasellowiana) peel flours: A source of dietary fibers and bioactive compounds. Food Biosci. 2020;38:100789. https://doi.org/10.1016/j.fbio.2020.100789

34. Resende LM, Franca AS, Oliveira LS. Buriti (Mauritia flexuosa L. f.) fruit by-products flours: Evaluation as source of dietary fibers and natural antioxidants. Food Chem. 2019;270:53-60. https://doi.org/10.1016/j.foodchem.2018.07.079

35. Guillon F, Champ M. Structural and physical properties of dietary fiber and consequences of processing on human physiology. Food Res Int. 2000;33(3-4):233-45. https://doi.org/10.1016/S0963-9969(00)00038-7

36. Borges MV, Sousa EB, Silveira MFA, de Souza ARM, Alves VM, Nunes LBM, Barros SKA. Physical-chemical and technological properties of açaí residue flour and its use. Res Soc Dev. 2021. https://doi.org/10.33448/rsd-v10i5.14517

37. Leão DP, Franca AS, Oliveira LS, Bastos R, Coimbra MA. Physicochemical characterization, antioxidant capacity, total phenolic and proanthocyanidin content of flours prepared from pequi (CaryocarbrasilenseCamb.) fruit by-products. Food Chem. 2017;225:146-53. https://doi.org/10.1016/j.foodchem.2017.01.027

38. Silva RM, do Nascimento Silva S, Wanderley RDOS, de Paiva ACC, de Medeiros AP. Chemical and colorimetric characterization of orange, melon and pineapple peel flours. Res Soc Dev. 2020;9(7). http://dx.doi.org/10.33448/rsd-v9i7.3912

39. Bolanho BC, Egea MB, Guido ES, Danesi EDG. Produção de farinha com subproduto do processamento de palmito pupunha (BactrisgasipaesKunth.) para aplicação em biscoitos. Rev Bras Prod Agroind. 2015;17(2):149-58. http://dx.doi.org/10.15871/1517-8595/rbpa.v17n2p149-158

40. Raghavendra SN, Swamy SR, Rastogi NK, Raghavarao KSMS, Kumar S, Tharanathan RN. Grinding characteristics and hydration properties of coconut residue: A source of dietary fiber. J Food Eng. 2006;72(3):281-6. https://doi.org/10.1016/j.jfoodeng.2004.12.008

Publicado

2025-05-12

Como Citar

1.
Gois Santos B, Silva Pacheco de Oliveira I, Aranda Rodrigues M, Cavalcante Martinez E, Carvalho Pinto AL, Uekane TM. Estudo comparativo da composição centesimal, propriedades físico-químicas e tecnológicas do subproduto do café Arábica (casca e polpa). DEMETRA [Internet]. 12º de maio de 2025 [citado 12º de maio de 2025];20:e82196. Disponível em: https://www.e-publicacoes.uerj.br/demetra/article/view/82196

Edição

Seção

Ciência e Tecnologia de Alimentos