Antinociceptive and anti-inflammatory activities of the hexanic extract of "Echinodorus macrophyllus" (Kunth) Micheli in mice

Authors

  • Daniele C. Fernandes Department of Biochemistry, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro. Rio de Janeiro, RJ, Brazil.
  • Bruna P. Martins P. Martins Department of Biochemistry, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro. Rio de Janeiro, RJ, Brazil.
  • David L. F. Medeiros Department of Biochemistry, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro. Rio de Janeiro, RJ, Brazil.
  • Shirley V. M. Santos Department of Biochemistry, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro. Rio de Janeiro, RJ, Brazil.
  • Carlos R. M. Gayer Department of Biochemistry, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro. Rio de Janeiro, RJ, Brazil.
  • Leosvaldo S. M. Velozo Department of Biochemistry, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro. Rio de Janeiro, RJ, Brazil.
  • Marsen G. P. Coelho Department of Biochemistry, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro. Rio de Janeiro, RJ, Brazil.

DOI:

https://doi.org/10.12957/bjhbs.2019.53056

Abstract

Introduction: Echinodorus macrophyllus (Kunth) Micheli,
Alismataceae, commonly known as “chapéu de couro”, is
used in the treatment of various inflammatory conditions.
The aim of this study was to evaluate the antinociceptive
and anti-inflammatory neurogenic potential and perform the
phytochemical analysis of its hexanic extract (HEEm). Material
and methods: The HEEm was obtained by maceration of
dried leaves with hexane (100 g d.w./2 L). Its composition was
determined by GC-MS (DB1 column) by comparison of retention
indices in the database and literature. The antinociceptive
potential was evaluated in SW or DBA/1 male mice using
chemical (acetic acid and formalin), thermal (tail immersion
and hot plate tests) and topical (xylene) nociception models,
all approved by the Ethics Committee (CEA-IBRAG). Results:
HEEM presented antinociceptive activity in the model of:
acetic acid-induced writhing (52%; 25mg/kg); tail immersion
(60 and 90 minutes; 50 mg/kg); hot-plate in 60 minutes (25
and 100mg/kg) and 120 minutes (25mg/kg); formalin tests, at
the neurogenic (63.4%, 100mg/kg), and inflammatory (50%;
50 and 100mg/kg) phases; and in neurogenic inflammation
induced by xylene (88.3%; 100mg/kg). These activities seem to
be related to the terpene and fatty acid derivatives evidenced
by GC-MS. Discussion: HEEm presented antinociceptive, as
well as anti-inflammatory, activity by central and peripheral
mechanisms, It consists of terpenic and fatty acid derivatives,
described in the literature as antioxidants, anti-inflammatory,
and antinociceptives. Conclusions: HEEm showed antinociceptive
activity in all models, which can be related to the
presence of terpenic and fatty acid derivatives.


Keywords: Echinodorus macrophyllus; Nociception;
Neurogenic inflammation; Phytochemistry.

Downloads

Download data is not yet available.

Author Biographies

Daniele C. Fernandes, Department of Biochemistry, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro. Rio de Janeiro, RJ, Brazil.

Department of Biochemistry, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro. Rio de Janeiro, RJ, Brazil.

Bruna P. Martins P. Martins, Department of Biochemistry, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro. Rio de Janeiro, RJ, Brazil.

Department of Biochemistry, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro. Rio de Janeiro, RJ, Brazil.

David L. F. Medeiros, Department of Biochemistry, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro. Rio de Janeiro, RJ, Brazil.

Department of Biochemistry, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro. Rio de Janeiro, RJ, Brazil.

Shirley V. M. Santos, Department of Biochemistry, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro. Rio de Janeiro, RJ, Brazil.

Department of Biochemistry, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro. Rio de Janeiro, RJ, Brazil.

Carlos R. M. Gayer, Department of Biochemistry, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro. Rio de Janeiro, RJ, Brazil.

Department of Biochemistry, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro. Rio de Janeiro, RJ, Brazil.

Leosvaldo S. M. Velozo, Department of Biochemistry, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro. Rio de Janeiro, RJ, Brazil.

Department of Biochemistry, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro. Rio de Janeiro, RJ, Brazil.

Marsen G. P. Coelho, Department of Biochemistry, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro. Rio de Janeiro, RJ, Brazil.

Department of Biochemistry, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro. Rio de Janeiro, RJ, Brazil.

References

Abrahin O, Rodrigues RP, Nascimento VC, et al. Single-and 1.

Newman DJ, Cragg GM. Natural products as sources of new

drugs from 1981 to 2014. J Nat Prod. 2016;79:629-661.

Ekor M. The growing use of herbal medicines: issues relating

to adverse reactions and challenges in monitoring safety. Front

Pharmacol. 2013;4:177. doi: 10.3389/fphar.2013.00177.

de La Cruz MG. Plantas utilizadas por raizeiros na medicina

popular em Cuiabá, Mato Grosso. In: Plantas medicinais de

Mato Grosso - A Farmacopeia Popular dos Raizeiros. Cuiabá,

MG, Brazil, Carlini & Caniato, eds.; p.63-128,2008.

Lopes CL, Albano F, Laranja GAT et al. Toxicological evaluation by in

vitro and in vivo assays of an aqueous extract prepared from Echinodorus

macrophyllus leaves. Toxicol Letters. 2000;116:189-198.

da Silva GP, Fernandes DC, Vigliano MV et al. Flavonoid-enriched

fraction from Echinodorus macrophyllus aqueous extract exhibits

high in-vitro and in-vivo anti-inflammatory activity. J Pharm Pharmacol.

;68:1584-1596.

Tannus-Rangel E, Santos SR, Lima JCS, et al. Topical and systemic

anti-inflammatory effects of Echinodorus macrophyllus (Kunth.)

Micheli (Alismataceae). J Med Food. 2010;13:1161-1166.

Fernandes DC, Velozo LSM, Alves RA, et al. Antinociceptive activity

of essential oil from Echinodorus macrophyllus (Kunth.) Micheli

(Alismataceae). Rev Fitos. 2012;7:245-251.

Strada CL, Lima KC, Silva VC, et al. Isovitexin as marker and bioactive

compound in the antinociceptive activity of the Brazilian crude

drug extracts of Echinodorus scaber and E. Grandiflorus. Braz J

Pharmacog. 2017;27:619-626.

Priestap HA, Van Baren CM, Di Leo Lira, et al. Volatile constit-

uents of Aristolochia argentina. Phytochemistry 2003;63:221-

Silva MS, Miranda RRS, Ferraz VP, et al. Changes in the essential oil

composition of leaves of Echinodrus macrophyllus exposed to

γ-radiation, Rev Brasil Farmacog. 2013;23:600-607.

Koster R, Anderson M, de Beer EJ. Acetic acid for analgesic

screening. Fed Proc. 1959;18:412.

Shibata M, Ohkubo T, Takahashi H, et al. Modified formalin

test: characteristic biphasic pain response. Pain. 1989;38:347-

Tita B, Abdel-Haq H, Vitalone A, et al. Analgesic properties of

Epilobium angustifolium, evaluated by the hot plate test and the

writhing test. Farmaco. 2001;56:341-343.

Sewell RDE, Spencer PSJ. Antinociceptive activity of narcotic

agonist and partial agonist analgesics and other agents in

the tail-immersion test in mice and rats. Neuropharmacol.

;15:683-688.4

Young JM, de Young JM. Cutaneous models of inflammation

for the evaluation of topical and systemic pharmacological

agents. In: Spector J, Back N, eds. Pharmacological methods

in the control of inflammation. New York. p.215-231,1989.

Tjølsen A, Berge OG, Hunskaar S, et al. The formalin test: an

evaluation of the method. Pain. 1992;51:5-17.

Castro FL. Atividade antiedematogênica e antinociceptiva do

extrato aquoso de folhas de Echinodorus macrophyllus. Dissertação

(Mestrado pelo Programa de Pós-Graduação em Biociências),

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2005.

Fernandes DC. Fracionamento do extrato de Echinodorus macrophyllus

biomonitorado pela atividade anti-inflamatória tópica.

Dissertação (Mestrado pelo Programa de Pós-Graduação em Biociências).

Universidade do Estado do Rio de Janeiro, Rio de Janeiro,

Ribeiro RA, Vale SM, Thomazzi AB, et al. Involvement of resident

macrophages and mast cells in the writhing nociceptive

response induced by zymosan and acetic acid in mice. Eur J

Pharmacol. 2000;387:111-118.

Ikeda Y, Ueno A, Naraba H, et al. Involvement of vanilloid

receptor VR1 and prostanoids in the acid-induced writhing

responses of mice. Life Sci. 2001;69:2911-2019.

Collier HOJ, Dinneen LC, Johnson CA, et al. The abdominal

constriction response and its suppression by analgesic drugs

in the mouse. Brit J Pharmacol. 1968;32:295-310.

Shibata M, Ohkubo T, Takahashi H, et al. Modified formalin

test: characteristic biphasic pain response. Pain. 1989;38:347-

Coderre TJ, Yashpal K. Intracellular messengers contributing to

persistent nociception and hyperalgesia induced by L-glutamate

and substance P in the rat formalin pain model. Eur J

Neurosci. 1994;6:1328-1334.

Danneman PJ, Kiritsy-Roy JA, Morrow TJ et al. Central delay of

the laser-activated rat tail-flick reflex. Pain 1994;58:39-44.

Jensen TS, Yaksh TL. Comparison of antinociceptive action of

morphine in the periaqueductal gray medial and paramedical

medulla in the rat. Brain Res. 1986;363:99-113.

Katzung BG. Basic and Clinical Pharmacology, 6th ed. Appleton

and Lange, Connecticut, 2005.

Le Bars D, Gozariu M, Cadden SW. Animal models of nociception.

Pharmacol Rev. 2001;53:597-652.

Bomba FDT, Wandji BA, Piegang BN, et al. Antinociceptive properties

of the aqueous and methanol extracts of the stem bark of Petersianthus

macrocarpus (P. Beauv.) Liben (Lecythidaceae) in mice. J

Ethnopharmacol. 2015;174:66-73.

Richardson JD, Vasko MR. Cellular mechanisms of neurogenic

inflammation. J Pharmacol Exp Therap. 2002;302:839-845.

Banki E, Hajna Z, Kemeny A, et al. The selective PAC1 receptor

agonist maxadilan inhibits neurogenic vasodilation and edema

formation in the mouse skin. Neuropharmacol. 2014;85:538-

Reddy LH, Couvreur P. Squalene: A natural triterpene for use in

disease management and therapy. Advanc Drug Delivery Rev.

;61:1412-1426.

Santos CCMP, Salvadori MS, Mota VG, et al. Antinociceptive and

antioxidant activities of phytol in vivo and in vitro models. Neurosc

J. 2013;2013:949452. doi: 10.1155/2013/949452.

Silva RO, Sousa FBM, Damasceno SRB et al. Phytol, a diterpene

alcohol, inhibits the inflammatory response by reducing

cytokine production and oxidative stress. Fund Clin Pharmacol.

;28,455-464.

Islama MT, Alic ES, Uddind SJ, et al. Phytol: A review of biomedical

activities. Food Chem Toxicol. 2018;121:82-94.

Newill H, Loske R, Wagner J, et al. Oxidation products of stigmasterol

interfere with the action of the female sex hormone

b-estradiol in cultured human breast and endometrium cell

lines. Mol Nutr Food Res. 2007;51:888-898.

Yadav M, Parlea M, Jindala DK, et al. Protective effects of

stigmasterol against ketamine-induced psychotic symptoms:

Possible behavioral, biochemical and histopathological changes

in mice. Pharmacol Rep. 2018;70:591-599.

Jelenko C, Wheeler ML, Anderson AP, et al. Studies in burns:

XIV, Heling in burn wounds treated with Ethyl Linoleate alone or

in combination with selected topical antibacterial agents Ann

Surg. 1975;182:562-566.

Charakida A, Charakida M, Chu AC Double-blind, randomized,

placebo-controlled study of a lotion containing triethyl citrate

and ethyl linoleate in the treatment of acne vulgaris. Br J Dermatol.

;157:569-574.

Rayne S. Chemical profiles of essential oils and non-polar extractables

from sumac (Rhus spp.). a mini-review. Elect J Food

Plant Chem. 2008;3:5-9.

Muanda FN, Dicko A, Soulimani R. Chemical composition and

biological activities of Ficus capensis leaves extracts. J Nat

Prod. 2010;3:147-160.

Downloads

Published

2019-06-03

How to Cite

1.
Fernandes DC, Martins BPMP, Medeiros DLF, Santos SVM, Gayer CRM, Velozo LSM, et al. Antinociceptive and anti-inflammatory activities of the hexanic extract of "Echinodorus macrophyllus" (Kunth) Micheli in mice. BJHBS [Internet]. 2019 Jun. 3 [cited 2025 May 28];18(1):25-32. Available from: https://www.e-publicacoes.uerj.br/bjhbs/article/view/53056

Issue

Section

Original Papers