RELATIONSHIP BETWEEN RETURN, ACCOUNTING RATIOS, AND ECONOMIC SCENARIO INDICATORS USING THE PANEL DATA METHODOLOGY OF COMPANIES IN THE ARTIFICIAL INTELLIGENCE SECTOR
Abstract
This study analyzed whether there is a statistically significant relationship between the variability of ROE (Return on Equity), ROIC (Return on Operational Invested Capital), and RCS (Return on Common Stock) with both the variability of predictor variables represented by accounting indices and the variability of important fundamental market indicators of the United States economy. Among the justifications for the choice of the topic is the significant historical growth in the price and return of common stocks of leading companies (Big Techs) listed in the artificial intelligence sector on the NASDAQ during the analyzed period from 2014 to 2023. To support the research, the theoretical framework addressed items directly related to artificial intelligence, efficient markets and their reaction to the disclosure of information on advances in artificial intelligence, and the relationship between artificial intelligence, accounting performance, and equity value. The panel data methodology was used to estimate multiple regressions, validated by p-value, Adjusted R², consistency of the signs of the predictor coefficients with the dependent variables, and the Hausman Test for model selection. Among the selected independent variables, the Net Profit Margin, the Price/Earnings ratio, and the Research and Development to Total Assets ratio were statistically significant in explaining the variability of ROE and ROIC. Surprisingly, none of the independent variables were found to be statistically significant in explaining the return of the selected common stocks. The findings contribute to the development of new research in this promising sector for investment and financing transactions, considering the inclusion of new independent variables (qualitative and quantitative), different observation periods, and changes in the sample.
References
BIRZ, G.; LOTT, J. R. The effect of macroeconomic news on stock returns: New evidence from newspaper coverage. Journal of Banking & Finance, v. 35, n. 11, 2791-2800, 2011. https://doi.org/10.1016/j.jbankfin.2011.03.006
CASTAGNA, A. D.; MATOLCSY, Z. P. The relationship between accounting variables and systematic risk and the prediction of systematic risk. Australian Journal of Management, v. 3, n. 2, 113-126, 1978. https:// doi.org/10.1177/031289627800300
CHANG, T. S. Evaluation of an artificial intelligence project in the software industry based on fuzzy analytic hierarchy process and complex adaptive systems. Journal of Enterprise Information Management, v. 36, n. 3, 879-905, 2023. https://doi.org/10.1108/JEIM-02-2022-0056
CHEN, S.; WANG, Y.; JIANG, H. Impact of artificial intelligence on earnings per share forecasting and stock price: Evidence from the US information technology industry. Journal of Business Research, v.161, 1143-1155, 2023.
DEVORE, J. L. Probabilidade e estatística para engenharia e ciências. Cengage Learning, 6ª edição, 2006.
DING, G.; OIN, L. Study on the prediction of stock price based on the associated network model of LSTM'. International Journal of Machine Learning and Cybernetics, v. 11, 1307–1317, 2020. https://doi.org/10.1007/s13042-019-01041-1
DIRICAN, C. The Impacts of robotics, artificial intelligence on business and economics. Procedia - Social and Behavioral Sciences, 195, 564-573, 2015. https://doi.org/10.1016/j.sbspro.2015.06.134
DUARTE, P. C.; LAMOUNIER, W. M.; TAKAMATSU, R. T. Modelos econométricos para dados em painel: aspectos teóricos e exemplos de aplicação à pesquisa em contabilidade e finanças. In: CONGRESSO USP DE INICIAÇÃO CIENTÍFICA EM CONTABILIDADE, São Paulo. Anais... São Paulo: FEA-USP, 2007.
FAMA, E. F. Efficient capital markets: a review of theory and empirical work. Journal of Finance, n. 25, v. 2, 383-417, 1970. https://doi.org/10.2307/2325486
GUPTA, S. Artificial intelligence, analytics and agile: transforming project nanagement in the 21st Century. International Journal of Recent Technology and Engineering (IJRTE), v. 11, n. 1, 1-8, 2022. https://doi.org/10.35940/ijrte.G6877.0511122
GUJARATI, D. N.; PORTER, D. C. Econometria básica. McGrawHill, 5ª edição, 2011.
HAENLEIN, M.; KAPLAN, A. A brief history of artificial intelligence: on the past, present, and future of artificial intelligence. California Management Review, v. 61, 5-14, 2019. https://doi/10.1177/0008125619864925
HOULTHOUSEN, R.; VERRECHIA, R. The effect of informedness and consensus on price and trading volume behavior. The Accounting Review, v. 65, 191-208, 1990. http://www.jstor.org/stable/247883
JANKOVÁ, Z.; JANA, D. K.; DOSTAL, P. Investment decision support based on interval Type-2 Fuzzy Expert System. Engineering Economics, v. 32, n. 2, 118-129, 2021. https://doi.org/10.5755/j01.ee.32.2.24884
KIM, O.; VERRECHIA, R. E. Trading volume and price reactions to public announcements. Journal of Accounting Research, v. 29, n. 2, 302-321, 1991. Disponível em: http://www.jstor.org/stable/2491051
KUTTNER, K. N. Monetary policy surprises and interest rates: evidence from the Fed Fund Futures Market. Journal of Monetary Economics, v. 47, n. 3, 523-544. 2021. https://doi.org/10.1016/S0304-3932(01)00055-1
LI, J.; LI, N.; CHEONG, X. The impact of fintech on corporate technology innovation based on driving effects, mechanism identification, and heterogeneity analysis. Discrete Dynamics in Nature and Society, 2021. https://doi.org/10.1155/2021/7825120
PINDYCK, R.; RUBINFEL, D. Econometria: modelos e previsões. Elsevier, 2004. ISBN 8535213430, 9788535213430
ROSS, S. A.; WESTERFIELD, R. W.; JAFFE, J. F. Administração financeira. 1ª ed. São Paulo: Editora Atlas. 1995.
SANTOS, J. O. Análise de crédito – empresas, pessoas físicas e agronegócio. 7ª ed. São Paulo: Dialética Editora, 2024. https://doi.org/10.48021/978-65-270-2408-8
TURING, A. Computing machinery and intelligence. Mind a Quarterly Review of Psychology and Philosophy, 59, 433-460,1950. https://doi.org/10.1093/mind/LIX.236.433
VESNA, B. A. Challenges of financial risk management: AI applications. Journal of Sustainable Business and Management Solutions in Emerging Economies, v. 26, n. 3, 27-34, 2021. https://doi.org/10.7595/management.fon.2021.0015
VON KROGH, G. Artificial intelligence in organizations: New opportunities for phenomenon-based theorizing. Academy of Management Discoveries, v. 4, n. 4, 404-409, 2018. https://doi.org/10.5465/amd.2018.0084
XING, X.; YAN, S. Accounting information quality and systematic risk. Review of Quantitative Finance and Accounting, v. 52, 85-103, 2019. https://doi.org/10.1007/s11156-018-0703-z
WOOLDRIDGE, J. M. Introdução a econometria: uma abordagem moderna. Cengage Learning, 2017 ISBN-13:9788522126996
Downloads
Published
How to Cite
Issue
Section
License
Os direitos patrimoniais dos artigos aceitos para publicação, inclusive de tradução, passam a ser de propriedade da Revista de Contabilidade do Mestrado em Ciências Contábeis da UERJ (online).
É permitida a citação parcial de artigos publicados, sem autorização prévia, desde que seja identificada a fonte. A reprodução total de artigos é proibida. Em caso de dúvidas, favor entrar em contato: (revistacontabilidadeuerj@gmail.com).
As declarações dos artigos aprovados, devem ser originalmente assinadas e enviadas pelos Correios para o endereço de contato da revista.