Blood Flow Restriction Training – An Intervention to Counteract Muscle Loss Caused by the Covid-19 Pandemic
DOI:
https://doi.org/10.12957/bjhbs.2022.71659Keywords:
Covid-19, Physical activity, Resistance exercise, Blood flow, Muscular system.Abstract
ntroduction: Physical inactivity is a major unintended consequence of the social distancing imposed by the Covid-19 pandemic. Increased physical inactivity and sedentary behaviors have profound physiological impacts on muscular health,leading to muscle and strength losses that are associated with lowerperformance and higher mortality rates. In the so-called “new normal”, exercise routines must find alternative ways to replace high-intensity resistance exercises,since resources are limited in home environments. Blood flow restriction (BFR) is a low-intensity training method involving compressive pressure of the vasculature by use of a tourniquet cuff in the proximal portion of the upper and lower limbs. BFR has been demonstrated to be a safe and efficient training modality to promote muscle and strength gains in different groups, including those under musculoskeletal rehabilitation, young and older adults, and athletes. Objective: This review aims to show that BFR training is an effective intervention for counteracting losses of muscle mass and function caused by Covid-19. Methods: A review of the scientific literature was conducted on electronic databases, such as PubMed, Scielo and Web of Science, covering the period 2000–2020. Results: We advocate the use of BFR training as an urgent counteracting intervention to prevent muscle and strength losses during social distancing and propose a progressive home-based protocol based on wide array of literature. Conclusion: This evidence can help practitioners, personal trainers, physical therapists, and physician assistants to implement an alternative exercise routine that may prevent the deleterious physiological effects of physical inactivity on muscle function during intermittent social distancing.Downloads
References
Ding D, Lawson KD, Kolbe-Alexander TL, et al. The economic burden of physical inactivity: a global analysis of major non-communicable diseases. Lancet. 2016; 388(10051):1311-24.doi:10.1016/s0140-6736(16)30383-x
Lee IM, Shiroma EJ, Lobelo F, et al. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012; 380(9838):219-29.doi:10.1016/s0140-6736(12)61031-9
Guthold R, Stevens GA, Riley LM, et al. Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1·9 million participants. Lancet Glob Health. 2018; 6(10):e1077-e86.doi:10.1016/s2214-109x(18)30357-7
Sallis JF, Adlakha D, Oyeyemi A, et al. An international physical activity and public health research agenda to inform coronavirus disease-2019 policies and practices. J Sport Health Sci. 2020; 9(4):328-34.doi:10.1016/j.jshs.2020.05.005
Sallis R, Young DR, Tartof SY, et al. Physical inactivity is associated with a higher risk for severe COVID-19 outcomes: a study in 48 440 adult patients. Br J Sports Med. 2021.doi:10.1136/bjsports-2021-104080
Chodzko-Zajko WJ, Proctor DN, Fiatarone Singh MA, et al. American College of Sports Medicine position stand. Exercise and physical activity for older adults. Med Sci Sports Exerc. 2009; 41(7):1510-30.doi:10.1249/MSS.0b013e3181a0c95c
Phillips SM, McGlory C. CrossTalk proposal: The dominant mechanism causing disuse muscle atrophy is decreased protein synthesis. J Physiol. 2014; 592(24):5341-3.doi:10.1113/jphysiol.2014.273615
Wang Y, Pessin JE. Mechanisms for fiber-type specificity of skeletal muscle atrophy. Curr Opin Clin Nutr Metab Care. 2013; 16(3):243-50.doi:10.1097/MCO.0b013e328360272d
Klausen K, Andersen LB, Pelle I. Adaptive changes in work capacity, skeletal muscle capillarization and enzyme levels during training and detraining. Acta Physiol Scand. 1981; 113(1):9-16.doi:10.1111/j.1748-1716.1981.tb06854.x
Schoenfeld BJ, Wilson JM, Lowery RP, et al. Muscular adaptations in low- versus high-load resistance training: A meta-analysis. Eur J Sport Sci. 2016; 16(1):1-10.doi:10.1080/17461391.2014.989922
Saeidifard F, Medina-Inojosa JR, West CP, et al. The association of resistance training with mortality: A systematic review and meta-analysis. Eur J Prev Cardiol. 2019; 26(15):1647-65.doi:10.1177/2047487319850718
Prevention CfDCa. Being Fully Vaccinated. 2020 [cited 2021 May 18th]; Available from: https://www.cdc.gov/coronavirus/2019-nCoV/index.html.
Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019; 48(1):16-31.doi:10.1093/ageing/afy169
Patterson SD, Hughes L, Warmington S, et al. Blood Flow Restriction Exercise: Considerations of Methodology, Application, and Safety. Front Physiol. 2019; 10:533.doi:10.3389/fphys.2019.00533
Pearson SJ, Hussain SR. A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sports Med. 2015; 45(2):187-200.doi: 10.1007/s40279-014-0264-9
Lixandrão ME, Ugrinowitsch C, Berton R, et al. Magnitude of Muscle Strength and Mass Adaptations Between High-Load Resistance Training Versus Low-Load Resistance Training Associated with Blood-Flow Restriction: A Systematic Review and Meta-Analysis. Sports Med. 2018; 48(2):361-78.doi:10.1007/s40279-017-0795-y
Takarada Y, Tsuruta T, Ishii N. Cooperative effects of exercise and occlusive stimuli on muscular function in low-intensity resistance exercise with moderate vascular occlusion. Jpn J Physiol. 2004; 54(6):585-92.doi:10.2170/jjphysiol.54.585
Rossow LM, Fahs CA, Loenneke JP, et al. Cardiovascular and perceptual responses to blood-flow-restricted resistance exercise with differing restrictive cuffs. Clin Physiol Funct Imaging. 2012; 32(5):331-7.doi:10.1111/j.1475-097X.2012.01131.x
Takarada Y, Takazawa H, Ishii N. Applications of vascular occlusion diminish disuse atrophy of knee extensor muscles. Med Sci Sports Exerc. 2000; 32(12):2035-9.doi:10.1097/00005768-200012000-00011
Conceição MS, Junior EMM, Telles GD, et al. Augmented Anabolic Responses after 8-wk Cycling with Blood Flow Restriction. Med Sci Sports Exerc. 2019; 51(1):84-93.doi:10.1249/mss.0000000000001755
Clarkson MJ, Conway L, Warmington SA. Blood flow restriction walking and physical function in older adults: A randomized control trial. J Sci Med Sport. 2017; 20(12):1041-6.doi:10.1016/j.jsams.2017.04.012
Hill RD, Smith RB, III. Examination of the Extremities: Pulses, Bruits, and Phlebitis. In: Walker HK, Hall WD, Hurst JW, editors. Clinical Methods: The History, Physical, and Laboratory Examinations. Boston: Butterworths Copyright © 1990, Butterworth Publishers, a division of Reed Publishing.; 1990.
Zourdos MC, Klemp A, Dolan C, et al. Novel Resistance Training-Specific Rating of Perceived Exertion Scale Measuring Repetitions in Reserve. J Strength Cond Res. 2016; 30(1):267-75.doi:10.1519/jsc.0000000000001049
Clay I. 10 Minute At-Home Lower Body Workout Livestrong.com's channel2020.
Loenneke JP, Wilson JM, Wilson GJ, et al. Potential safety issues with blood flow restriction training. Scand J Med Sci Sports. 2011; 21(4):510-8.doi:10.1111/j.1600-0838.2010.01290.x
Nakajima T, Kurano M, Iida H, et al. Use and safety of KAATSU training:Results of a national survey. International Journal of KAATSU Training Research. 2006; 2(1):5-13.doi:10.3806/ijktr.2.5
Wernbom M, Schoenfeld BJ, Paulsen G, et al. Commentary: Can Blood Flow Restricted Exercise Cause Muscle Damage? Commentary on Blood Flow Restriction Exercise: Considerations of Methodology, Application, and Safety. Front Physiol. 2020; 11:243.doi:10.3389/fphys.2020.00243
Takano H, Morita T, Iida H, et al. Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. Eur J Appl Physiol. 2005; 95(1):65-73.doi:10.1007/s00421-005-1389-1
Renzi CP, Tanaka H, Sugawara J. Effects of leg blood flow restriction during walking on cardiovascular function. Med Sci Sports Exerc. 2010; 42(4):726-32.doi:10.1249/MSS.0b013e3181bdb454
Vieira PJ, Chiappa GR, Umpierre D, Stein R, Ribeiro JP. Hemodynamic responses to resistance exercise with restricted blood flow in young and older men. J Strength Cond Res. 2013; 27(8):2288-94.doi:10.1519/JSC.0b013e318278f21f
Sugawara J, Tomoto T, Tanaka H. Impact of leg blood flow restriction during walking on central arterial hemodynamics. Am J Physiol Regul Integr Comp Physiol. 2015; 309(7):R732-9.doi:10.1152/ajpregu.00095.2015
Fahs CA, Rossow LM, Loenneke JP, et al. Effect of different types of lower body resistance training on arterial compliance and calf blood flow. Clin Physiol Funct Imaging. 2012; 32(1):45-51.doi:10.1111/j.1475-097X.2011.01053.x
Rossow LM, Fahs CA, Sherk VD, et al. The effect of acute blood-flow-restricted resistance exercise on postexercise blood pressure. Clin Physiol Funct Imaging. 2011; 31(6):429-34.doi:10.1111/j.1475-097X.2011.01038.x
Brandner CR, Kidgell DJ, Warmington SA. Unilateral bicep curl hemodynamics: Low-pressure continuous vs high-pressure intermittent blood flow restriction. Scand J Med Sci Sports. 2015; 25(6):770-7.doi:10.1111/sms.12297
Downs ME, Hackney KJ, Martin D, et al. Acute vascular and cardiovascular responses to blood flow-restricted exercise. Med Sci Sports Exerc. 2014; 46(8):1489-97.doi:10.1249/mss.0000000000000253
Madarame H, Kurano M, Fukumura K, et al. Haemostatic and inflammatory responses to blood flow-restricted exercise in patients with ischaemic heart disease: a pilot study. Clin Physiol Funct Imaging. 2013; 33(1):11-7.doi:10.1111/j.1475-097X.2012.01158.x
Kambič T, Novaković M, Tomažin K, et al. Blood Flow Restriction Resistance Exercise Improves Muscle Strength and Hemodynamics, but Not Vascular Function in Coronary Artery Disease Patients: A Pilot Randomized Controlled Trial. Front Physiol. 2019; 10:656.doi:10.3389/fphys.2019.00656
Nursing E-B. Nursing and Post Pandemic Health Challenges. 2020 [cited 2021 May 18th]; Available from: https://blogs.bmj.com/ebn/2020/04/15/nursing-and-post-pandemic-health-challenges/.
Hollander JE, Carr BG. Virtually Perfect? Telemedicine for Covid-19. N Engl J Med. 2020; 382(18):1679-81.doi:10.1056/NEJMp2003539
Lopes KG, Bottino DA, Farinatti P, et al. Strength training with blood flow restriction - a novel therapeutic approach for older adults with sarcopenia? A case report. Clin Interv Aging. 2019; 14:1461-9.doi:10.2147/cia.S206522
Downloads
Published
How to Cite
Issue
Section
License
After the final approval, authors must send the copyright transfer agreement signed by the first author representing each additional author. In this agreement must be stated any conflicts of interest.
Brazilian Journal of Health and Biomedical Sciences de http://bjhbs.hupe.uerj.br/ is licensed under a License Creative Commons - Attribution-NonCommercial 4.0 International.