Perspectives of incretin mimetics in cardiovascular diseases

Authors

  • João Felipe R. Cardoso Departamento de Morfologia, Escola de Medicina, Fundação Técnico-Educacional Souza Marques. Rio de Janeiro, RJ, Brasil. https://orcid.org/0000-0001-6391-5986
  • Célia Cohen Departamento de Nutrição e Dietética, Escola de Nutrição Emília de Jesus Ferreiro. Universidade Federal Fluminense. Niterói, RJ, Brasil. Departamento de Clínica Médica, Universidade do Estado do Rio de Janeiro. Rio de Janeiro, RJ, Brasil.
  • Fernanda J. Medeiros Departamento de Nutrição Aplicada, Escola de Nutrição. Universidade Federal do Estado do Rio de Janeiro. Rio de Janeiro, RJ, Brasil. Departamento de Clínica Médica, Universidade do Estado do Rio de Janeiro. Rio de Janeiro, RJ, Brasil.
  • Fabiano M. Serfaty Departamento de Clínica Médica, Universidade do Estado do Rio de Janeiro. Rio de Janeiro, RJ, Brasil.
  • Mario F. T. Neves Departamento de Clínica Médica, Universidade do Estado do Rio de Janeiro. Rio de Janeiro, RJ, Brasil.

DOI:

https://doi.org/10.12957/bjhbs.2021.59746

Keywords:

Incretins, Diabetes type 2, GLP-1, GIP, DPP-4.

Abstract

Introduction: Type 2 Diabetes (DM2) is a chronic condition
associated with an increased risk of cardiovascular diseases,
neuropathies, nephropathies and eye diseases. Incretins (GIP
and GLP-1) are hormones important to insulin secretion, and
their actions are compromised in DM2 patients. Objectives:
This review considers the opportunities and challenges of
using incretin mimetics in the treatment of DM2. Methods:
Bibliographic review referring to the period from 2000 to
2020, in electronic databases such as Scielo, Lilacs, PubMed,
Web of Science. Results: Incretins stimulate insulin secretion
by the pancreas in response to nutrient intake, with a lower
potential to cause hypoglycemia. In addition, they have a
cardioprotective role, reducing blood pressure, improving
endothelial and myocardial function, and their use has been
associated with a reduction in the risk of cardiovascular
events, including cardiovascular mortality. Clinical trials
with GLP-1R agonists (GLP-1RA) reduced albuminuria, increased
natriuresis, and decreased oxidative stress. In addition,
treatment with incretin mimetics reduced the occurrence of
the main cardiovascular outcomes related to atherosclerosis,
promoted weight loss and improved lipid profile. Conclusion:
Studies show the important role of incretin mimetics in the
pathophysiology and treatment of DM2, with significant
effects in the cardiovascular system. However, its use must be
evaluated in relation to its safety and to in which individuals
the benefits outweigh the risks associated with the treatment.
Thus, its clinical relevance depends on studies with long-term
follow-up of patients, with analysis of its impact on mortality
and on the development of micro and macrovascular
complications.

References

Sociedade Brasileira de Diabetes. Diretrizes da Sociedade Brasileira de Diabetes 2019-2020. Costa e Forti A, Pires AC, Pittito B de A, Gerchman F, Oliveira JEP de, Zajdenverg L, et al., editors. Editora Clannad; 2019.491 p.

Sociedade Brasileira de Diabetes. Conduta Terapeutica no Diabetes Tipo 2: Algoritimo SBD. SBD. 2019;1–40.

Nichols GA, Kimes TM, Harp JB, et al. Glycemic Response and Attainment of A1C Goals Following Newly Initiated Insulin Therapy for Type 2 Diabetes. Diabetes Care. 2012;35:495–7.

Cernea S. The Role of Incretin Therapy at Different Stages of Diabetes. Rev Diabet Stud. 2011;8(3):323–38.

Tasyurek HM, Altunbas HA, Balci MK, et al. Incretins : Their physiology and application in the treatment of diabetes mellitus. Diabetes Metab Res Rev. 2014;30:354–71.

Al-sabah S. Molecular Pharmacology of the Incretin. Med Princ Pract. 2016;25(suppl 1):15–21.

White WB, Baker WL. Cardiovascular Effects of Incretin-Based Therapies. Annu Rev Med. 2016;67:245–69.

Mari A, Bagger JI, Ferrannini E, et al. Mechanisms of the Incretin Effect in Subjects with Normal Glucose Tolerance and Patients with Type 2 Diabetes. PLoS One. 2013;8(9):e73154.

Seino Y, Fukushima M, Yabe D. GIP and GLP-1 , the two incretin hormones : Similarities and differences. J Diabetes Investig. 2010;1(1):8–23.

Chon S, Gautier J. An Update on the Effect of Incretin-Based Therapies on β-Cell Function and Mass. Diabetes Metab J. 2016;40:99–114.

Ussher JR, Drucker DJ. Cardiovascular Biology of the Incretin System. Endocrinol Rev. 2012;33(2):187–215

Campbell JE, Drucker DJ. Pharmacology , Physiology , and Mechanisms of Incretin Hormone Action. Cell Metab [Internet]. 2013;17:819–37.

Vilsbøll T, Brock B, Perrild H, et al. Liraglutide , a once-daily human GLP-1 analogue , improves pancreatic B-cell function and arginine-stimulated insulin secretion during hyperglycaemia in patients with Type 2 diabetes mellitus. Diabet Med. 2008;25:152–6.

Mudaliar S, Henry RR. The incretin hormones : from scientific discovery to practical therapeutics. Diabetologia. 2012;55:1865–8.

Klinger S, Poussin C, Debril M, et al. Increasing GLP-1 – Induced ␤ -Cell Proliferation by Silencing the Negative Regulators of Signaling cAMP Response Element Modulator-α. Diabetes. 2008;57:584–93.

Trümper A, Trümper K, Hörsch D. Mechanisms of mitogenic and anti-apoptotic signaling by glucose-dependent insulinotropic polypeptide in β (INS-1) -cells. J Endocrinol. 2002;174:233–46.

Ehses JANA, Casilla VR, Doty TIM, et al. Glucose-Dependent Insulinotropic Polypeptide Promotes β-(INS-1) Cell Survival via Cyclic Adenosine Monophosphate-Mediated Caspase-3 Inhibition and Regulation of p38 Mitogen-Activated Protein Kinase. Endocrinology. 2003;144(10):4433–45.

Higashi Y. Incretin-related drugs and cardiovascular events : A comparison of GLP-1 analogue and DPP-4 inhibitor. J Cardiol. 2017;69:508–10.

Kristensen SL, Rorth R, Jhund OS, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. The Lancet, 2019;7(10):776-785.

Chou C, Chang Y, Yang J, et al. Effect of Long-term Incretin- Based Therapies on Ischemic Heart Diseases in Patients with Type 2 Diabetes Mellitus : A Network Meta- analysis. Sci Rep [Internet]. 2017;7(1):15795.

Gerstein HC, Colhoun HM, Dagenais GR, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet. 2019;394:121-30.

Zhao Y, Hu X, Liu Y, et al. ROS signaling under metabolic stress : cross-talk between AMPK and AKT pathway. Mol Cancer. 2017;16:1–12.

Wu S, Cipriani A, Yang Z, et al. The cardiovascular effect of incretin-based therapies among type 2 diabetes: a systematic review and network meta-analysis. Expert Opinion on Drug Safety, 2018;17(3):243-249.

Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4): 311–22.

Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375: 1834–44.

Dandona P, Ghanim H, Chaudhuri A. Incretins: Beyond type 2 diabetes. Diabetes, Obes Metab. 2018;20(Suppl 1):59–67.

Baar MJB Van, Aart AB Van Der, Hoogenberg K, et al The incretin pathway as a therapeutic target in diabetic kidney disease: a clinical focus on GLP-1 receptor agonists. Ther Adv Endocrinol Metab Rev. 2019;10:1–11.

Fioretto P, Frascati A. Role of incretin based therapies in the treatment of diabetic kidney disease. Diabetes Mellit [Internet]. 2018;21(5):395–8.

Macisaac RJ, Thomas MC. Effects of Diabetes Medications Targeting the Incretin System on the Kidney. Clin J Am Soc Nephrol 13. 2018;13:321–3.

Tonneijck L, Smits MM, Muskiet MHA, et al. Acute renal effects of the GLP-1 receptor agonist exenatide in overweight type 2 diabetes patients: a randomised. Diabetologia [Internet]. 2016;59:1412–21.

Scholten BJ Von, Persson F, et al. The effect of liraglutide on renal function: A randomized clinical trial. Diabetes. Obes Metab Metab. 2017;19(2):239–47.

Fujita H, Morii T, Fujishima H, et al. The protective roles of GLP-1R signaling in diabetic nephropathy : possible mechanism and therapeutic potential. Kidney Int. 2013;85:579–89.

Ghanim H, Chaudhuri A, Abuaysheh S, et al. Exenatide Suppresses TGFß1: A Novel Potential Role for GLP-1 Agonists in Nephropathy. Diabetes. 2016;65(Suppl 1):A131.

Perry B, Wang Y. Appetite regulation and weight control : the role of gut hormones. Nutr Diabetes [Internet]. 2012;2:e26-7.

Baggio LL, Drucker DJ. Glucagon-like peptide-1 receptors in the brain : controlling food intake and body weight. J Clin Invest. 2014;124(10):4223–6.

Mells JE, Fu PP, Sharma S, et al. Glp-1 analog, liraglutide, ameliorates hepatic steatosis and cardiac hypertrophy in C57BL/6J mice fed a Western diet. Am J Physiol Gastrointest Liver Physiol. 2012;302:G225–35.

Pi-Sunyer X, Astrup A, Fujioka K, et al. new england journal. N Engl J Med. 2015;373(1):11–22.

Voronova V, Zhudenkov K, Penland RC, et al. Exenatide effects on gastric emptying rate and the glucose rate of appearance in plasma: A quantitative assessment using an integrative systems pharmacology model. Diebetes, Obes Metab. 2018;20:2034–8.

Suganuma Y, Shimizu T, Sato T, et al. Magnitude of slowing gastric emptying by glucagon-like peptide-1 receptor agonists determines the amelioration of postprandial glucose excursion in Japanese patients with type 2 diabetes. J Diabetes Investig. 2020;11(2):389-399.

Shibata R, Sato K, Pimentel DR, et al. Adiponectin protects against myocardial ischemia- reperfusion injury through AMPK- and COX-2 – dependent mechanisms. Nat Med. 2005;11(10):1096–103.

Downloads

Published

2021-06-02

How to Cite

Cardoso, J. F. R., Cohen, C., Medeiros, F. J., Serfaty, F. M., & Neves, M. F. T. (2021). Perspectives of incretin mimetics in cardiovascular diseases. Brazilian Journal of Health and Biomedical Sciences, 20(1), 55–62. https://doi.org/10.12957/bjhbs.2021.59746

Issue

Section

Literature Review