ANÁLISE DA FRAGMENTAÇÃO FLORESTAL POR MEIO DE MÉTRICAS DA PAISAGEM NA REGIÃO DE ECÓTONO ENTRE CERRADO E MATA ATLÂNTICA

Authors

DOI:

https://doi.org/10.12957/geouerj.2025.84818

Keywords:

Conservação da natureza, Recursos florestais, Estrutura da paisagem, Minas Gerais, MapBiomas

Abstract

A transition between the Cerrado and the Atlantic Forest creates a unique landscape, characterized by significant biological diversity, yet constantly threatened by human actions. Understanding the landscape structure focusing on forest fragmentation is crucial to provide support for biodiversity conservation, enabling society to sustainably utilize forest resources in the future. The aim of this study was to analyze forest fragmentation in an ecotone area between the Cerrado and the Atlantic Forest, considered a priority for environmental restoration in the state of Minas Gerais. Information available in MapBiomas 2022 served as the basis for creating the land use and land cover map of the region and the forest fragmentation map. Geoprocessing operations were conducted using ArcGIS, and landscape metrics, such as size and shape of each patch, were calculated using Fragstats. The landscape matrix is dominated by agricultural activities, and forest fragments have an average area of 5.74 hectares, with 82.16% being smaller than that. Fragments smaller than 1 hectare account for 32.57%. In the Atlantic Forest, there is a predominance of fragments smaller than 5 hectares, while in the Cerrado, 32.9% of forest cover is in fragments larger than 100 hectares. The values of the shape index did not differ significantly between biomes, except in the largest size class. It can be concluded that the landscape matrix characterized by agricultural activities has led to significant forest fragmentation in the region, with the Atlantic Forest area being more fragmented than the Cerrado area.

Downloads

Download data is not yet available.

References

ALEHASHEMI, A.; MANSOURI, S. Landscape; a Shifting Concept The Evolution of the Concept of Landscape from Renaissance. Bagh- e Nazar, v.14, n.57, p. 33-44, 2018.

ANJOS, L .J.; de SOUZA, E. B.; AMARAL, C. T.; IGAWA, T. K.; DE TOLEDO, P. M. Future projections for terrestrial biomes indicate widespread warming and moisture reduction in forests up to 2100 in South America. Global Ecology and Conservation. v.25, e01441. 2021. https://doi.org/10.1016/j.gecco.2020.e01441

ASSIS, T. O.; ESCADA, M. I. S.; AMARAL, S. Effects of deforestation over the Cerrado landscape: a study in the Bahia Frontier. Land, v. 10, n. 4, p.352. 2021. https://doi.org/10.3390/land10040352

BANKS-LEITE, C.; MATTHEW G. B.; EWERS, R. B.; ORME,C. D. L.; PIGOT, A. L. The macroecology of landscape ecology. Trends in Ecology & Evolution, v.37, n.6, p. 480 – 487, 2022. https://doi.org/10.1016/j.tree.2022.01.005

BARBOZA, A. C. G; TAGLIACOLLO, V.; JACOBUCCI, G. B. Influence of Seasonal Hydrological Regimes on Benthic Macroinvertebrates in Two The Brazilian Biodiversity Hotspots, Limnologica, v. 106, e126170, 2024. https://doi.org/10.1016/j.limno.2024.126170

BLANCO-LIBREROS, J. F.; RAMÍREZ-RUIZ, K. Threatened mangroves in the Anthropocene: Habitat fragmentation in urban coastalscapes of Pelliciera spp.(Tetrameristaceae) in northern South America. Frontiers in Marine Science, v.8, e670354. 2021. https://doi.org/10.3389/fmars.2021.670354

CABALLERO, C. B.; BIGGS, T. W.; VERGOPOLAN, N.; WEST, T. A. P.; RUHOFF, A. Transformation of Brazil’s biomes: the dynamics and fate of agriculture and pasture expansion into native vegetation. Science of The Total Environment, v. 896, e166323, 2023. https://doi.org/10.1016/j.scitotenv.2023.166323

CIMA, I. S.; AMARAL, S.; MASSI, K. G. Mapping Cerrado Remnants in an Anthropized Landscape in Southeast Brazil. Remote Sensing Applications: Society and Environment, v. 32, e101032, 2023. https://doi.org/10.1016/j.rsase.2023.101032

CUNNINGHAM, C.; BEAZLEY, K. F.; BUSH, P. G.; BRAZNER, J. C. Addressing the Boundary and Modifiable Areal Unit Problems Simultaneously when Measuring Landscape Fragmentation Using Patch-Based Metrics: a Case Study of Effective Mesh Size in Nova Scotia, Canada. Environmental Modeling & Assessment, v.29, p. 655–665, 2024. https://doi.org/10.1007/s10666-023-09950-w

DIAS, T. D. C.; SILVEIRA L. F.; FRANCISCO, M. R. Spatiotemporal dynamics reveals forest rejuvenation, fragmentation, and edge effects in an Atlantic Forest hotspot, the Pernambuco Endemism Center, northeastern Brazil. PLoS One, v. 18, n. 9, e0291234, 2023. https://doi.org/10.1371/journal.pone.0291234

DOMINGUES, G. F.; HUGHES, F. M.; DOS SANTOS, A. G.; CARVALHO, A. F.; CALEGARIO, A. T.; SAITER, F. Z.; MARCATTI, G. E. Designing an optimized landscape restoration with spatially interdependent non-linear models, Science of The Total Environment, v. 873, e162299, 2023. https://doi.org/10.1016/j.scitotenv.2023.162299

FAHRIG, L. Why do several small patches hold more species than few large patches? Global Ecology and Biogeography. v.29, n. 4, p.615-628, 2020. https://doi.org/10.1111/geb.13059

FERNANDES, M. M.; LIMA, A. H. S.; WANDERLEY, L. L.; FERNANDES, M. R. M.; ARAUJO FILHO, R. N. Fragmentação florestal na Bacia Hidrográfica do Rio São Francisco, Brasil. Ciência Florestal, v. 32, n. 3, p. 1227-1246, 2022. https://doi.org/10.5902/1980509845253

GRANTHAM, H. S.; DUNCAN, A.; EVANS, T. D.; JONES, K. R.; BEYER, H. L.; SCHUSTER, R.; WALSTON, J.; RAIO, J. C.; ROBINSON, J. G.; CALLOW, M.; Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nature Communications. v. 11, e5978. 2020.

IBGE – INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Bioma e sistema Costeiro-Marinho do Brasil: compatível com a escala 1:250.000. Série Relatórios Metodológicos, v. 45. Rio de Janeiro: IBGE, 2019. 168 p.

IBGE – INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Geociências. Dados ambientais. Disponível em: https://geoftp.ibge.gov.br/informacoes_ambientais. Acesso em: 30 abr. 2024

JARAMILLO, J.J.; RIVAS, C.A.; OTEROS, J.; NAVARRO-CERRILLO, R. M. Forest Fragmentation and Landscape Connectivity Changes in Ecuadorian Mangroves: Some Hope for the Future? Applied Sciences. v.13, n. 8, e5001. 2023. https://doi.org/10.3390/app13085001

MARTELLO, F.; SANTOS, J. S. dos; SILVA-NETO, C. M.; CÁSSIA-SILVA, C.; SIQUEIRA, K. N.; ATAÍDE, M. V. R. de; RIBEIRO, M. C.; COLLEVATTI, R. G. Landscape structure shapes the diversity of plant reproductive traits in agricultural landscapes in the Brazilian Cerrado. Agriculture, Ecosystems & Environment, v. 341, e108216, 2023. https://doi.org/10.1016/j.agee.2022.108216

MARTINELLI, L. A.; NAYLOR, R.; VITOUSEK, P. M.; MOUTINHO, P. Agriculture in Brazil: Impacts, costs, and opportunities for a sustainable future. Current Opinion in Environmental Sustainability. v.2, p.431–438. 2010. https://doi.org/10.1016/j.cosust.2010.09.008

McGARIGAL, K.; CUSHMAN, S. A.; ENE, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical Maps. Computer software program produced by the authors; available at the following web site: https://www.fragstats.org. Acesso em: 30 abr. 2024.

MINAS GERAIS. INSTITUTO ESTADUAL DE FLORESTAS. Parque Estadual Serra da Boa Esperança. Disponível em: http://www.ief.mg.gov.br. Acesso em: 30 abr. 2024.

MYERS, N.; MITTERMELER, R. A.: MITTERMELER, C. G. G.; DA FONSECA, G. A. B. B.; KENT, J. Biodiversity hotspots for conservation priorities, Nature, v. 403 p. 853-858. 2000. https://doi.org/10.1038/35002501

PENNINGTON, R. T.; LEHMANN, C. E. R.; ROWLAND, L. M. Tropical savannas and dry forests. Current Biology, v.28, n. 9, 2018.

POMPEU, J.; ASSIS, T. O.; OMETTO. J. P. Landscape changes in the Cerrado: challenges of land clearing, fragmentation and land tenure for biological conservation. Science of The Total Environment, v. 906, e167581, 2024. https://doi.org/10.1016/j.scitotenv.2023.167581

RAMÍREZ-DELGADO, J. P.; DI MARCO, M.; WATSON, J. E.; JOHNSON, C. J.; RONDININI, C.; CORREDOR LLANO, X.; ARIAS, M.; VENTER, O. Matrix condition mediates the effects of habitat fragmentation on species extinction risk. Nature Communications, v.13, p. 595. 2022

RIBEIRO, J. P.; METZGER, A. C.; MARTENSEN, F. J.; PONZONI, M. M. Hirota The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? implications for conservation. Biol. Conserv, v. 142, p. 1141-1153. 2009. https://doi.org/10.1016/j.biocon.2009.02.021

RIBEIRO, M. P.; MELLO, K.; VALENTE, R. A. Avaliação da estrutura da paisagem visando à conservação da biodiversidade em paisagem urbanizada. Ciência Florestal, v. 30, n. 3, p. 819-834, 2020. https://doi.org/10.5902/1980509837683

SÁ JÚNIOR, A. et al. Aplicação da classificação de Köppen para o zoneamento climático do estado de Minas Gerais. Brasil. Climatologia Teórica e Aplicada, v.108, p.1-7, 2012.

SANTOS, J. S.; LEITE, C. C. C.; VIANA, J. C. C.; SANTOS, A. R.; FERNANDES, M. M.; ABREU, V. S.; NASCIMENTO, T. P.; SANTOS, L. S.; FERNANDES, M. R. M.; SILVA, G. F.; MENDONÇA, A. R. Delimitation of ecological corridors in the Brazilian Atlantic Forest, Ecological Indicators, v. 88, p. 414-424, 2018. https://doi.org/10.1016/j.ecolind.2018.01.011.

SANTOS, A. R.; ARAÚJO, E. F.; BARROS, Q. S.; FERNANDES, M. M.; FERNANDES, M. R. M.; MOREIRA, T.; SOUZA, K. B.; SILVA, E. F.; SILVA, J. P. M.; SANTOS, J. S.; BILLO, D.; SILVA, R. F.; NASCIMENTO, G. S. P.; GANDINE, S. M. S.; PINHEIRO, A. A.; RIBEIRO, W. R.; GONÇALVES, M. S.; SILVA, S. F.; SENHORELO, A. P.; HEITOR, F. D.; BERUDE, L. C.; TELLES, L. A. A. Fuzzy concept applied in determining potential forest fragments for deployment of a network of ecological corridors in the Brazilian Atlantic Forest, Ecological Indicators, v.115, e106423, 2020. https://doi.org/10.1016/j.ecolind.2020.106423.

SISEMA - SISTEMA ESTADUAL DE MEIO AMBIENTE E RECURSOS HÍDRICOS. Infraestrutura de Dados Espaciais. IDE-Sisema. Disponível em: idesisema.meioambiente.mg.gov.br. Acesso em: 30 abr. 2024.

SMITH, A. J.; GOETZ, E. M. Climate change drives increased directional movement of landscape ecotones. Landscape Ecology, v.36, p.3105–3116, 2021. https://doi.org/10.1007/s10980-021-01314-7

STEVANATO, M.; COLAVITE, A. P.; PAROLIN, M. A Ecologia de Paisagem nos Estudos de Fragmentos Florestais. Revista Geonorte, v.14, n.45, p.01-19, 2023. https://doi.org/10.21170/geonorte.2023.V.14.N.45.01.19

STRASSBURG, B. B. N.; IRLBARREM, A.; BEYER, H. L.; CORDEIRO, C. L.; CROUZELLES, R.; JAKOVAC, C. C.; JUNQUEIRA, A. B.; LACERDA, E.; LATAWLEC, A. E.; BALMFORD, A.; BROOKS, T. M.; BUTCHART, S. H. M.; CHAZDON, R. L.; ERB, K-H.; BRANCALION, P.; BUCHANAN, G.; COOPER, D.; DÍAZ, S.; DONALD, P. F.; KAPOS, V.; LECLÈRE, D.; MILES, L.; OBERSTEINER, M.; PLUTZAR, C.; SCARAMUZZA, C. A. M.; SCARANO, F. R.; VISCONTI, P. Global priority areas for ecosystem restoration. Nature, v. 586, p. 724-729, 2020. https://doi.org/10.1038/s41586-020-2784-9

TAUBERT, F.; FISCHER, R.; GROENEVELD, J.; LEHMANN, S.; MÜLLER, M.S.; RÖDIG, E.; WIEGAND, T.; HUTH, A. Global patterns of tropical forest fragmentation. Nature, v. 554, p.519–522. 2018.

VANCINE, M. H.; MUYLAERT, R. L.; NIEBUHR, B. B.; OSHIMA, F. de, J. E.; TONETTI, V.; BERNARDO, R.; ANGELO, C. de; ROSA, M. R.; GROHMANN, C. H.; RIBEIRO, M. C. The Atlantic Forest of South America: Spatiotemporal dynamics of the vegetation and implications for conservation. Biological Conservation, v.291, e110499, 2024. https://doi.org/10.1016/j.biocon.2024.110499

WASSON, K.; WOOLFOLK, A.; FRESQUEZ, C. Ecotones as Indicators of Changing Environmental Conditions: Rapid Migration of Salt Marsh–Upland Boundaries. Estuaries and Coasts, v.36, p. 654–664, 2013. https://doi.org/10.1007/s12237-013-9601-8

ZHEN, S.; ZHAO, Q.; LIU, S.; WU, Z.; LIN, S.; LI, J.; HU, X. Detecting Spatiotemporal Dynamics and Driving Patterns in Forest Fragmentation with a Forest Fragmentation Comprehensive Index (FFCI): Taking an Area with Active Forest Cover Change as a Case Study. Forests, v.14, n.6, e1135. 2023; https://doi.org/10.3390/f14061135

Published

2025-05-09

How to Cite

MARTINI, Angeline; PANCIERI, Shauanne Dias; TORRES, Fillipe Tamiozzo Pereira. ANÁLISE DA FRAGMENTAÇÃO FLORESTAL POR MEIO DE MÉTRICAS DA PAISAGEM NA REGIÃO DE ECÓTONO ENTRE CERRADO E MATA ATLÂNTICA. Geo UERJ, Rio de Janeiro, v. 47, 2025. DOI: 10.12957/geouerj.2025.84818. Disponível em: https://www.e-publicacoes.uerj.br/geouerj/article/view/84818. Acesso em: 10 may. 2025.

Most read articles by the same author(s)