Tracking the history of circulating nucleic acids for cancer research in Brazil: A systematic review

Authors

  • Mariana Chantre-Justino Laboratório de Marcadores Circulantes, Departamento de Patologia e Laboratórios, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro. Rio de Janeiro, RJ, Brazil.
  • Lucas Delmonico Laboratório de Radiações em Biologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
  • Claudia Lage Laboratório de Radiações em Biologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
  • Maria G. C. Carvalho Laboratório de Patologia Molecular, Departamento de Patologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro. Rio de Janeiro, RJ, Brazil.
  • Maria Helena F. Ornellas Laboratório de Marcadores Circulantes, Departamento de Patologia e Laboratórios, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro. Rio de Janeiro, RJ, Brazil.
  • Gilda Alves Laboratório de Marcadores Circulantes, Departamento de Patologia e Laboratórios, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro. Rio de Janeiro, RJ, Brazil.

DOI:

https://doi.org/10.12957/bjhbs.2021.63966

Keywords:

Brazil, Cancer, Circulating nucleic acids, cfDNA, cfRNA, Liquid biopsy.

Abstract

Introduction: Circulating nucleic acids can be obtained
by minimally invasive procedures based on liquid biopsy,
which has emerged as a promising area of investigation for
screening and monitoring cancer treatment. Currently, tests
based on circulating nucleic acid analysis, specifically cellfree
DNA (cfDNA), are commercially available for diagnostic
and prognostic investigation of a number of neoplasms. Objective:
To describe the research on circulating nucleic acid
markers for cancer prospecting in Brazil, since this area has
advanced rapidly in recent years. Methods: In this systematic
review, we surveyed Brazilian publications in cancer research
focused on cfDNA and cfRNA present in different fluids. Both
MEDLINE-PUBMED and EMBASE databases were inspected
using terms such as “circulating nucleic acids”, “cancer”, and
“Brazil”. Results: The search returned 326 articles, in which
28 Brazilian translational studies were eligible. Different
methodologies were reported for different types of cancer,
in which cfDNA from plasma was the most investigated
biological material. Molecular investigations included quantification,
somatic mutation, RNA expression, genotyping,
microsatellites, blood protein interaction, and methylation.
Discrepancies in the regional distribution of the studies were
also observed. Conclusion: Studies on circulating nucleic acid
markers have advanced significantly in the oncology field,
but many others are needed to better address the clinical
practice in Brazil.

Author Biographies

Mariana Chantre-Justino, Laboratório de Marcadores Circulantes, Departamento de Patologia e Laboratórios, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro. Rio de Janeiro, RJ, Brazil.

Laboratório de Marcadores Circulantes, Departamento de
Patologia e Laboratórios, Faculdade de Ciências Médicas,
Universidade do Estado do Rio de Janeiro. Rio de Janeiro, RJ, Brazil.

Lucas Delmonico, Laboratório de Radiações em Biologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil

Laboratório de Radiações em Biologia, Instituto de Biofísica Carlos
Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de
Janeiro, RJ, Brazil

Claudia Lage, Laboratório de Radiações em Biologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.

Laboratório de Radiações em Biologia, Instituto de Biofísica Carlos
Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de
Janeiro, RJ, Brazil.

Maria G. C. Carvalho, Laboratório de Patologia Molecular, Departamento de Patologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro. Rio de Janeiro, RJ, Brazil.

Laboratório de Patologia Molecular, Departamento de Patologia,
Hospital Universitário Clementino Fraga Filho, Universidade
Federal do Rio de Janeiro. Rio de Janeiro, RJ, Brazil.

Maria Helena F. Ornellas, Laboratório de Marcadores Circulantes, Departamento de Patologia e Laboratórios, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro. Rio de Janeiro, RJ, Brazil.

Laboratório de Marcadores Circulantes, Departamento de
Patologia e Laboratórios, Faculdade de Ciências Médicas,
Universidade do Estado do Rio de Janeiro. Rio de Janeiro, RJ, Brazil

Gilda Alves, Laboratório de Marcadores Circulantes, Departamento de Patologia e Laboratórios, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro. Rio de Janeiro, RJ, Brazil.

Laboratório de Marcadores Circulantes, Departamento de
Patologia e Laboratórios, Faculdade de Ciências Médicas,
Universidade do Estado do Rio de Janeiro. Rio de Janeiro, RJ, Brazil.

References

Shyr D, Liu Q. Next generation sequencing in cancer research

and clinical application. Biol Proced Online. 2013;15(1):4. DOI:

1186/1480-9222-15-4

Castro-Giner F, Gkountela S, Donato C, et al. Cancer

Diagnosis Using a Liquid Biopsy: Challenges and

Expectations. Diagnostics (Basel). 2018;8(2):31. DOI: 10.3390/

diagnostics8020031

Bronkhorst AJ, Ungerer V, Holdenrieder S. The emerging role of

cell-free DNA as a molecular marker for cancer management.

Biomol Detect Quantif. 2019;17:100087. DOI: 10.1016/j.

bdq.2019.100087

Delmonico L, Alves G, Bines J. Cell free DNA biology and its

involvement in breast carcinogenesis. Adv Clin Chem, 1st ed.,

Elsevier, 2020;p.171-223. DOI: 10.1016/bs.acc.2019.12.006

Kawamura MT, Paschoal ME, Carvalho MDC. In vitro

interaction of serum protein with circulating DNA of lung cancer

patient. Int J Mol Med. 1999;4(2):187-190. DOI: 10.3892/

ijmm.4.2.187

Kawamura MT, Paschoal ME, Carvalho MDC. Profile of

Proteins Complexed with Circulating DNA of a Lung Cancer

Patient. Ann N Y Acad Sci. 2006;906:51-54. DOI: 10.1111/

j.1749-6632.2000.tb06590.x

Fernández-Lázaro D, Hernández JLG, García AC, et al. Liquid

Biopsy as Novel Tool in Precision Medicine: Origins, Properties,

Identification and Clinical Perspective of Cancer’s Biomarkers.

Diagnostics. 2020;10:215. DOI: 10.3390/diagnostics10040215

Alves G, Kawamura MT, Nascimento P, et al. DNA release by

line-1 (L1) retrotransposon. Could it be possible? Ann N Y

Acad Sci. 2000;906:129-133. DOI: 10.1111/j.1749-6632.2000.

tb06602.x

Machado ASC, Robaina MCS, Rezende LMM, et al. Circulating

cell-free and Epstein-Barr virus DNA in pediatric B-non-

Hodgkin lymphomas. Leuk Lymphoma.2010;51(6):1020-1027.

DOI: 10.3109/10428191003746331

Moreno R, Delgado PO, Coelho PG, et al. Lack of reliability

of nanotechnology in the of free plasma DNA in samples of

patients with prostate cancer. Int Arch Med. 2013;6(1):2. DOI:

1186/1755-7682-6-2

Delgado PO, Alves BCA, Gehrke FS, et al. Characterization of

cell-free circulating DNA in plasma in patients with prostate

cancer. Tumour Biol. 2013;34(2):983-6. DOI: 10.1007/s13277-

-0634-6

Wroclawski ML, Serpa-Neto A, Fonseca FLA, et al. Cell-free

plasma DNA as biochemical biomarker for the diagnosis

and follow-up of prostate cancer patients. Tumour Biol.

;34(5):2921-2927. DOI: 10.1007/s13277-013-0854-4

Filho BFS, Gurgel APAD, Neto MAFLN, et al. Circulating

cell-free DNA in serum as a biomarker of colorectal

cancer. J Clin Pathol. 2013;66(9):775-778. DOI: 10.1136/

jclinpath-2013-201521

Almeida EFP, Abdalla TE, Arrym TP, et al. Plasma and urine

DNA levels are related to microscopic hematuria in patients

with bladder urothelial carcinoma. Clin Biochem. 2016;49(16-

:1274-1277. DOI: 10.1016/j.clinbiochem.2016.08.021

Faria G, Silva E, Fonseca C, et al. Circulating Cell-Free DNA

as a Prognostic and Molecular Marker for Patients with Brain

Tumors under Perillyl Alcohol-Based Therapy. Int J Mol Sci.

;19(6):1610. DOI: 10.3390/ijms19061610

Normando SRC, Delgado PO, Rodrigues AKSB, et al.

Circulating free plasma tumor DNA in patients with advanced

gastric cancer receiving systemic chemotherapy. BMC Clin

Pathol. 2018;18:12. DOI: 10.1186/s12907-018-0079-y

Alves SIPMN, Hallack ML, Perez MM, et al. Application of

the Z-scan technique for the detection of CFCDNA (cell-free

circulating DNA) and urine DNA (uDNA) in patients with bladder

cancer. Photodiagnosis Photodyn Ther. 2019;26:131-133. DOI:

1016/j.pdpdt.2019.02.022

Alves MC, Fonseca FLA, Yamada AMTD, et al.

Increased circulating tumor DNA as a noninvasive

biomarker of early treatment response in patients

with metastatic ovarian carcinoma: A pilot study.

Tumour Biol. 2020;42(5):1010428320919198. DOI:

1177/1010428320919198

Hyun MH, Sung JS, Kang EJ, et al. Quantification of circulating

cell-free DNA to predict patient survival in non-small-cell lung

cancer. Oncotarget. 2017;8(55):94417–94430. DOI: 10.18632/

oncotarget.21769

Meddeb R, Dache ZAA, Thezenas S, et al. Quantifying

circulating cell-free DNA in humans. Sci Rep. 2019;9(1):5220.

DOI: 10.1038/s41598-019-41593-4

Carpinetti P, Donnard E, Bettoni F, et al. The use of

personalized biomarkers and liquid biopsies to monitor

treatment response and disease recurrence in locally advanced

rectal cancer after neoadjuvant chemoradiation. Oncotarget.

;6(35):38360–38371. DOI: 10.18632/oncotarget.5256

Ferreira EN, Barros BDF, Souza JE, et al. A genomic case

study of desmoplastic small round cell tumor: comprehensive

analysis reveals insights into potential therapeutic targets and

development of a monitoring tool for a rare and aggressive

disease. Hum Genomics. 2016;10(1):36. DOI: 10.1186/s40246-

-0092-0

Knebel FH, Bettoni F, Shimada AK, et al. Sequential liquid

biopsies reveal dynamic alterations of EGFR driver mutations

and indicate EGFR amplification as a new mechanism

of resistance to osimertinib in NSCLC. Lung Cancer.

;108:238-241. DOI: 10.1016/j.lungcan.2017.04.004

Barros BDF, Kupper BEC, Junior SA, et al. Mutation Detection

in Tumor-Derived Cell Free DNA Anticipates Progression in

a Patient With Metastatic Colorectal Cancer. Front Oncol.

;8:306. DOI: 10.3389/fonc.2018.00306

Delmonico L, Costa MASM, Fournier MV, et al. Mutation

profiling in the PIK3CA, TP53, and CDKN2A genes in circulating

free DNA and impalpable breast lesions. Ann Diagn Pathol.

;39:30-35. DOI: 10.1016/j.anndiagpath.2018.12.008

Knebel FH, Bettoni F, Fonseca LG, et al. Circulating Tumor

DNA Detection in the Management of Anti-EGFR Therapy for

Advanced Colorectal Cancer. Front Oncol. 2019;9:170. DOI:

3389/fonc.2019.00170

Pizzi MP, Bartelli TF, Pelosof AG, et al. Identification of DNA

mutations in gastric washes from gastric adenocarcinoma

patients: Possible implications for liquid biopsies and patient

follow-up. Int J Cancer. 2019;145(4):1090-1098. DOI: 10.1002/

ijc.32217

Miguez ACK, Barros BDF, Souza JES, et al. Assessment

of somatic mutations in urine and plasma of Wilms tumor

patients. Cancer Med. 2020;9(16):5948-5959. DOI: 10.1002/

cam4.3236

Boland CR, Thibodeau SN, Hamilton SR, et al. A National

Cancer Institute Workshop on Microsatellite Instability for cancer

detection and familial predisposition: development of international

criteria for the determination of microsatellite instability in

colorectal cancer. Cancer Res. 1998;58(22):5248-5257.

Nunes DN, Kowalski LP, Simpson AJ. Circulating tumor-derived DNA may permit the early diagnosis of head and neck squamous cell carcinomas. Int J Cancer. 2001;92(2):214-219. DOI: 10.1002/1097-0215(200102)9999:9999<::aid-ijc1176>3.0.co;2-c

Pinto JLF, Fonseca FLA, Marsicano SR, et al. Systemic chemotherapy-induced microsatellite instability in the mononuclear cell fraction of women with breast cancer can be reproduced in vitro and abrogated by amifostine. J Pharm Pharmacol. 2010;62(7):931-934. DOI: 10.1211/jpp.62.07.0015

Chantre-Justino M, Alves G. Genetic Polymorphism of Glutathione S-Transferase. In: Pál Perjési. (Org.). Glutathione Biosynthesis, Functions and Biological Implications. 1ed. New York: Nova Science Publishers, 2019; p. 189-222. ISBN: 978-1-53614-740-7

Cabral REC, Caldeira-de-Araujo A, Cabral-Neto JB, et al. Analysis of GSTM1 and GSTT1 polymorphisms in circulating plasma DNA of lung cancer patients. Mol Cell Biochem. 2010;338(1-2):263-269. DOI: 10.1007/s11010-009-0360-6

Silva MM, Fonseca CO, Moura-Neto R, et al. Influence of GSTM1 and GSTT1 polymorphisms on the survival rate of patients with malignant glioma under perillyl alcohol-based therapy. Genet Mol Res. 2013;12(2):1621-1630. DOI: 10.4238/2013.May.14.2

Pezuk JA, Miller TLA, Bevilacqua JLB, et al. Measuring plasma levels of three microRNAs can improve the accuracy for identification of malignant breast lesions in women with BI-RADS 4 mammography. Oncotarget. 2017;8(48):83940-83948. DOI: 10.18632/oncotarget.20806

Souza MF, Kuasne H, Barros-Filho MC, et al. Circulating mRNAs and miRNAs as candidate markers for the diagnosis and prognosis of prostate cancer. PLoS One. 2017;12(9):e0184094. DOI: 10.1371/journal.pone.0184094

Llinàs-Arias P, Esteller M. Epigenetic inactivation of tumour suppressor coding and non-coding genes in human cancer: an update. Open Biol. 2017;7(9):170152. DOI: 10.1098/rsob.170152

Delmonico L, Costa MASM, Gomes RJ, et al. Methylation profiling in promoter sequences of ATM and CDKN2A (p14ARF/p16INK4a) genes in blood and cfDNA from women with impalpable breast lesions. Oncol Lett. 2020;19(4):3003-3010. DOI: 10.3892/ol.2020.11382

Cui M, Wang H, Yao X, et al. Circulating MicroRNAs in Cancer: Potential and Challenge. Front Genet. 2019;10:626. DOI: 10.3389/fgene.2019.00626

Downloads

Published

2022-03-04

How to Cite

Chantre-Justino, M., Delmonico, L., Lage, C., Carvalho, M. G. C., Ornellas, M. H. F., & Alves, G. (2022). Tracking the history of circulating nucleic acids for cancer research in Brazil: A systematic review. Brazilian Journal of Health and Biomedical Sciences, 20(2), 135–143. https://doi.org/10.12957/bjhbs.2021.63966

Issue

Section

Original Papers