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Abstract 
This work studies mineralogical data from X-Ray Diffraction 
Techniques (XRD) and geochemical data analyzed by 
Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 
of fine fraction from samples collected along the Ocean 
Margin Exchange Project (OMEX) core KSGX 24. This 
core was recovered in the external sector of Ria de Vigo, N 
Spain. Radiocarbon ages allowed the estimation of an age 
about 3 ka cal BP for the core base. Core KSGX 24 is a 
muddy sedimentary sequence with two main sections where 
the sediments are finer: ≈134-90 cm and ≈26-0 cm. These 
finer sections are characterized by a relatively low 
sedimentation rate, and by changes in the geochemical and 
mineralogical composition of the sediments and their 
magnetic susceptibility. Basically, they are relatively depleted 
in carbonates and Ca content, and relatively enriched in 
detrital minerals, namely phyllosilicates, and in Al, Co and 
Sc. The slightly coarser grained intercalated sections are 

marked by the increase of Ce, La and Th content. These 
results suggests that, despite the prevalence of a weak 
hydrodynamic regime in the study area during the last 3 ka, 
it has undergone some changes. The mineralogical and 
geochemical deviations may have been conditioned by 
several factors, such as: authigenetic and diagenetic 
reactions; anthropogenic activities in the nearby continental 
region; the natural tendency for sea level rise; changes in 
hydrodynamic conditions regulated by modifications in the 
pattern of prevailing winds; and alterations in the rainfall 
regime. The two last factors are related to climate oscillations 
and probably with the tendency of the North Atlantic 
Oscillation (NAO) to remain more positive or negative 
during longer periods in the past than at present. 
 
Keywords: Sediment. Mineralogy. Geochemical fingerprint. 
Climatic oscillations. Coastal system. 

 
 
 

1. Introduction 
 

Since the 1960s the scientific community has making 
significant efforts to characterize and study the factors that 
conditioned sedimentation off the Iberian Margin, from the 
late Quaternary. The works of Duplaix et al. (1965), 
Monteiro and Moita (1971), Kudrass (1973, 1993), Siedler 

and Seibold (1974), Thiede (1977), Monteiro et al. (1980), 
Gonthier et al. (1984), Fedo et al. (1996), Stow et al. (1986), 
Vanney and Mougenot (1990), Abrantes (1991), Lebreiro et 
al. (1996), Schönfeld (1996), Baas et al. (1997), Zahn et al. 
(1997), Martins et al. (2013a, 2015a and references herein) 
were contributions that sought to understand the processes 
that affected the recent evolution of the Iberian Margin.  
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Compared with the last glacial period, the Holocene can 
be considered as quite a stable epoch. However this stability 
has been increasingly questioned (e.g. Meese et al., 1994; 
O'Brien et al., 1995; Bond et al., 1997; Bianchi and McCave, 
1999; deMenocal et al., 2000; Mayewski et al., 2004). Studies 
performed in the Iberian Peninsula, based on paleoflood 
records, indicated several changes in the frequency and 
magnitude of river floods, and therefore, in precipitation 
related to climatic variability, during the late Holocene 
(Thorndycraft and Benito, 2006). Several other studies also 
indicated changes in the rainfall regime of the Iberian 
Peninsula during the late Holocene (e.g. Abrantes et al., 
2005; Bartels-Jónsdóttir et al., 2006; Lebreiro et al., 2006; Gil 
et al., 2006). Bernárdez et al. (2008) related such changes to 
North Atlantic Oscillations (NAO). 

The NAO describes the varying air-pressure gradient 
between the Azores High and the Iceland Low (e.g. Hurrell, 
1995). The intensification of precipitation over the Iberian 
Peninsula is negatively correlated with the NAO index (Trigo 
et al., 2004; Vicente-Serrano and Heredia-Laclaustra, 2004), 
whereas the intensification of the northerly wind strength, 
which drives coastal upwelling along the Portuguese margin, 
shows a positive correlation with NAO (Oschlies, 2001). 
Today, the NAO varies on short timescales, however there 
is some evidences that the NAO may have shown, in the 
past, a tendency to exhibit positive or negative values over 
longer periods (e.g. Álvarez et al., 2005; Bartels-Jónsdóttir et 
al., 2006; Lebreiro et al., 2006). 

Recent high-resolution studies based on Holocene 
records were performed in the NW Iberian Peninsula, 
seeking to characterize major climatic changes and their 
influence in the Iberian Margin and in the evolution of 
transitional settings (e.g. Martínez-Cortizas et al., 1999; Diz 
et al., 2002; Desprat et al., 2003; Abrantes et al., 2005; 
Álvarez et al., 2005; González-Álvarez et al., 2005; Martins 
et al., 2005, 2006a, 2006b, 2007, 2013b; Bartels-Jónsdóttir et 
al., 2006; Lebreiro et al., 2006; Bernárdez et al., 2008). 

Currently, the main features of the shelf that define the 
transport and deposition of fine sediments in the NW 
Iberian Margin were explained by Dias et al. (2002a, b). The 
influence of these conditions in sediment mineralogical and 
geochemical composition was analyzed, for instance, by 
Araújo et al. (2002, 2007) and Oliveira et al. (2002). Recent 
sedimentation and sedimentary budgets on the NW Iberian 
shelf were studied by Jouanneau et al. (2002). 

Sediment mineralogical and geochemical composition are 
controlled by several factors, including tectonic setting, 
source rock composition and weathering, erosion, 

transportation, sedimentation, and diagenetic processes 
(McLennan, 1989; McLennan et al., 1993; Underwood et al., 
1993; Fedo et al., 1996; Astakhov et al., 1995; Crowley et al., 
1998; Chen et al., 2011; Tao et al., 2013). Climate has a 
fundamental role in rock weathering, erosion, and 
transportation and sedimentation processes (Bischoff et al., 
1997; Yuretich et al., 1999; Bischoff and Cummins, 2001; 
Thamban et al., 2002; Yuretich and Ervin, 2002; Jason et al., 
2005; Diekmann et al., 2008). 

Fragments of minerals eroded from source rocks and 
chemical elements are transferred into clastic sediments 
during rock weathering (McLennan and Taylor, 1991; Gu et 
al., 2002). Therefore, a variety of important proxies based on 
mineralogical and geochemical data have been applied to 
study clastic rock provenance and tectonic settings 
(Dickinson and Suczek, 1979; McLennan and Taylor, 1991; 
Schieber, 1992; Fedo et al., 1996; Tao et al., 2013). Among 
chemical elements, REE distribution patterns are useful 
indicators of geological processes and sediment provenance 
(Cullers et al., 1979, 1987, 1988; Taylor and McLennan, 1985; 
Bhatia and Crook, 1986; Cullers and Stone, 1991; McLennan 
et al., 1993; Cullers and Berendsen, 1998). 

On the basis of grain size, magnetic susceptibly, 
mineralogical and geochemical data, this study seeks to 
identify and characterize changes in the sedimentary 
dynamics of a muddy area located in the external sector of 
Ria de Vigo, N Spain, during the late Holocene. This work 
also aims to relate these changes with possible conditioning 
factors. 

 

1.1. Study area 
 

The Ria de Vigo is situated in Galicia, NW Spain, and 
belongs to a vast complex of coastal embayments called Rias 
Baixas, located between the latitudes of 42°N and 43°N. The 
Rias Baixas were formed due to reactivation of the Variscan 
tectonic fault that created sunken valleys, which were later 
invaded by the sea (Torre, 1958; Vidal Romani, 1984).  

The lithology of the continental areas surrounding the 
Ria de Vigo contributes to the sediment composition of this 
system (e.g. Caetano et al., 2009) and influence the coastal 
sediments in the Galicia region (Prego et al., 2012). The 
lithology of the NW Iberian Peninsula, in northern Spain, 
namely the Galicia region, is composed of different 
continental geological complexes, such as: Ortegal-Ordes, 
Malpica-Tuy, Brangança and Morais ophiolitic units, the 
Galiñeiro orthognaissic Complex and the Ollo-de-Sapo 
Domain. The lithology and tectonic details of these 
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continental formations have been studied by several authors 
(e.g. Ortega and Gil-Ibarguchi, 1990; Pin et al., 2002). 

The Ria de Vigo, with an area of approximately 176 km2, 
has a tapered shape of NNE-SSE orientation, with a central 
axis 33 km long. The central channel major axis has a 
maximum depth of 45 m at the mouth (Álvarez et al., 2005). 
The mouth is partially limited by the Cies Islands, creating 
two relatively narrow aisles at the entrances of the northern 
and southern parts. These apertures allow the 
interconnection with the ocean, and result in relatively calm 
conditions in this ria (Vilas et al., 1995, Fig. 1). 

Circulation inside the Ría de Vigo follows an estuarine 
pattern, with a deep current flow entering this system and a 
surface water flow exiting it (García-Gil et al., 1995). This 
general pattern changes seasonally due to the influence of the 
Azores High pressure center. During the summer, a 
northerly anticyclonic wind circulation, linked to the Azores 
High belt, reinforces the estuarine pattern (Álvarez-Salgado 
et al., 1993) and strengthens the upwelling (Fiuza et al., 1982; 
Blanton et al., 1987; Tenore et al., 1995; Figueiras et al., 
2002). The strongest upwelling phases cause mixing in the 
Ria de Vigo water column (Álvarez et al., 2005). 

During spring-summer, due to the action of northerly 
winds on surface waters, the current direction along the 
continental shelf is to the south (Peliz et al., 2002). On the 
other hand, during winter, the dominant southerly wind 
regime gives place to a rainy season and downwelling 
conditions, which generate a poleward flow along the 
continental shelf (Haynes and Barton, 1990).  

The Ria de Vigo is a highly productive system, due to the 
runoff influence of several small rivers (the bigger ones are 
Vergudo and Oitaven), and to municipal discharge of 
effluents, which introduced anthropogenically-produced 
nutrients and high amounts of organic matter (Prego, 1993). 
The upwelling system, which result in lower surface water 
temperatures, also introduces high nutrient contents. The 
abundant availability of nutrients generates high primary 
production in this ria (Prego, 1993; García-Gil et al., 1995; 
Álvarez-Salgado et al., 1996; Figueiras et al., 2002). 

 

2. Material and methods 

 

This work reanalyzes some textural and mineralogical 
data obtained by Martins et al. (2013b), and new geochemical 
and magnetic susceptibility results in core KSGX 24 (236 cm 

long). This core was collected in an oceanographic cruise 
conducted under the OMEX project (Ocean Margin 
Exchange Project), in the external sector of the Ria de Vigo, 
near the Cies Isles (at latitude 42°12'48'' N, longitude 
8°51'90'' W and 39 m water depth). The core was sampled 
every centimeter along its full length. Mineralogical and 
textural data were obtained every centimeter, and 
geochemical data was sampled every 2 cm along the core. 

The texture of the sediment was determined with a micro 
laser granulometer (Malvern Master Size), after eliminating 
organic matter and carbonates. The magnetic susceptibility 
(χ) of the sediment was measured on dried bulk sediment 
samples (at every centimeter). Measurements were done with 
a portable KT-9 Digital Magnetic Susceptibility Meter, by 
taking 10 successive readings per sample and using the mean 
of obtained values.  

The mineralogical analysis was carried out using X-ray 
diffraction techniques in sedimentary fractions <63 μm (silt 
plus clay fractions), using Philips PW1130/90 and X’Pert 
PW3040/60 equipment, and Cu Kα radiation. Scans were 
run between 2° and 40° 2θ. Qualitative and semiquantitative 
mineralogical analyses followed the method described by 
Martins et al. (2007).  

The concentrations of Al, Ca, Ce, Co, La, Sc and Th were 
determined after complete digestion of the sediment, using 
4 acids (HClO4, HNO3, HCl, HF), followed by analysis by 
ICP-MS, at ACME Laboratory, Canada. The chemical 
concentrations of the elements were normalized by the Al 
(Ca/Al, Ce/Al, Co/Al, La/Al, Sc/Al and Th/Al) and Sc 
(Ce/Sc, Co/Sc, La/Sc and Th/Sc) contents. The Co/Th 
ratio was also determined. 

The age model of this core was established by Martins et 
al. (2013b). It was based on four radiocarbon dates from the 
following levels: 33-34 cm, 71-72 cm, 143-144 cm, and 193-
194 cm. Radiocarbon analyses were performed in 
foraminifera tests (10 mg to 20 mg of various species) with 
size > 125 μm. Analyses were performed at Beta Analytic 
Inc., Miami, Florida, USA, by AMS. This work employed 
radiocarbon calibrated (cal BP) ages (2σ calibration) using 
the OxCal program v4.1.7 (Bronk Ramsey, 2001, 2008, 2009, 
2010). Radiocarbon ages were not corrected for the reservoir 
effect, since they are quite variable in this region, for the late 
Holocene (Soares and Dias, 2007). 

Before statistical analysis, data were logarithmically 
transformed by log (1+x). Pearson correlations between the 
studied variables were determined. A Principal Component 
Analysis (PCA) was applied to explain the variance of the 
main data and to display the general evolution of this core. 
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Both these analyses were performed with Statistica 13.0 
software. The study area was mapped using the Surfer 10 
software. 

3. Results 

Results of radiocarbon data are presented in Table 1. 
Ages determined for the following levels were: 33–34 cm: 
1160 to 970 cal BP; 71–72 cm: 1610 to 1420 cal BP; 143–145 
cm: 2160 to 1980 cal BP, and 193–194 cm: 2720 to 2470 cal 
BP. The age model of core KSGX 24 is shown in Figure 2. 
It allows the estimation of an age of approximately 3 ka cal 
BP for the core base. The mean sedimentation rate is quite 
variable along the core, and was estimated for the following 
sections: 0-34 cm ≈30 cm/ka, 35-72 cm ≈90 cm/ka; 73-144 
cm ≈82 cm/ka, and 144-235 cm ≈122 cm/ka. 

Core KSGX 24 is a muddy sedimentary sequence. The 
average sediment mean grain size is 19.4 μm and varies 
between 13.4 μm and 26.4 μm (Fig. 3). The percentage of 
fines fraction oscillated between 76% and 91%, and 
magnetic susceptibility (SI unities) varied between 0.14 and -
0.49 SI (average: -0.26 SI) (Fig. 4).  

Main sediment mineralogical composition includes (Fig. 
3): phyllosilicates (max: 43.8 %, min.: 9.3 %, average: 23.8%), 
quartz (max: 34.5 %, min.: 14.4 %, average: 23.5%), K-
feldspars (max: 12.9 %, min.: 1.4 %, average: 5.0%) and 
plagioclase (max: 17.2 %, min.: 4.8 %, average: 9.4 %). 
Sediment mineralogical composition also includes 
carbonates (max: 21.2 %, min.: 2.9 %, average: 10.8%), 
siderite (max: 2.6 %, min.: 0.0 %, average: 1.2%) and low 
occurrences of other minerals, such as opal C/T, anatase, 
dolomite and pyrite (<6%).  

The geochemical composition of the sediment revealed 
the following values for chemical elements analyzed in this 
work: Al (max. 8.5 %, min. 5.4 %, average 6.4%); Ca (max. 
6.0 %, min. 2.6 %, average 4.7%); Ce (max. 96 mg kg-1, min. 
65 mg kg-1, average 81 mg kg-1); Co (max. 10.4 mg kg-1, 
min. 5.9 mg kg-1, average 7.8 mg kg-1); La (max. 46 mg kg-
1, min. 28 mg kg-1, average 38 mg kg-1); Sc (max. 11.5 mg 
kg-1, min. 6.2 mg kg-1, average 8.2 mg kg-1), and Th (max. 
18.7 mg kg-1, min. 11.7 mg kg-1, average 15.5 mg kg-1). 

The core data of Al content, as well as of Ca/Al, Ce/Al, 
La/Al, Sc/Al and Th/Al values, are presented in Figure 4. 
In this figure, these geochemical data are compared with the 
fine fraction content and magnetic susceptibility values. 

In the finer grained sections, ≈134-90 cm and ≈26-0 cm, 
several variables tend to increase, namely phyllosilicates (Fig. 
3), magnetic susceptibility (Fig. 4), Al (Fig. 4), Co and Sc 

content, as well as Co/Al, Co/Th and Sc/Al values (Fig. 4). 
In these sections, the values of other variables, such as K-
feldspars (Fig. 3), Ca/Al, Ce/Al, La/Al and Th/Al (Fig. 4), 
as well as Ce/Sc, La/Sc and Th/Sc, tend to decline. 

 

3.1. Statistical results 
 
 

The biplots presented in Figure 5 show the regression line 
and relatively high values of R2 for the following variables: A 
- Ca (%) versus Al (%) (R2= 0.6176); B – Sc (mg Kg-1) versus 
Al (%) (R2= 0.8231); C - Ca (%) versus Ce/Al (R2= 0.6567); 
D - Ca (%) versus Co/Th (R2= 0.6387); E - Ca (%) versus 
La/Sc (R2= 0.7727), and F - Co/Th versus Ce/Al (R2= 
0.6791). 

Results of these biplots evidence the following positive 
correlations: Sc and Al; Ca and Ce/Al and La/Sc. They also 
show that the following variables have negative correlations: 
Ca and Al; Ca and Co/Th and; Co/Th and Ce/Al.  

Table 3 shows that there are significant correlations 
between most analyzed variables. In this table we can 
observe that, for instance, Al, Co, Sc, Co/Al, Co/Th, Sc/Al, 
and Sc/Th are significantly positively correlated with each 
other, and negatively correlated with Ca, Ca/Al, Ce, Ce/Al, 
Ce/Sc, La, La/Al, La/Sc, Th, Th/Al and Th/Sc. 

These correlations are clearly visualized in the groups 
established by Principal Components Analysis (PCA) for the 
first two factors, which explain 69% of data variability (Fig. 
6). In this PCA, the explained variability for the first and 
second factors is 0.60 and 0.10, respectively.  

The PCA establishes four groups of variables. Group I 
contains Ca (%), Ce (mg kg-1), La (mg kg-1), Th (mg kg-1) and 
K-feldspars (%), as well as the ratios Ca/Al, Ce/Al, Ce/Sc, 
La/Al, La/Sc, Th/Al and Th/Sc. These variables are 
positively correlated with Factor 1. 

Group II of the PCA (Fig. 6) includes Al (%), Co (mg kg-

1), Sc (mg kg-1) and phyllosilicates (%), as well as magnetic 
susceptibility (SI) and ratios Co/Al, Co/Th, and Sc/Al, and 
are negatively correlated with Factor 1. Group III is 
composed of quartz (%) and plagioclase (%). On the other 
hand, Group IV includes phyllosilicates (%), anatase (%) and 
K-feldspars (%).  

The age plot of Factor Score 1 of the PCA of Figure 6 is 
presented in Figure 7. The results of Factor Score 1 were 
compared with Th/Sc and Co/Th, which were selected from 
groups I and II, respectively, of the PCA of Fig. 5. 

The pattern of evolution of the values of Factor Score 1 
are similar to that of Th/Sc and is the opposite of Co/Th. 
The lowest values of this Factor Score are coincident with 
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major geochemical changes associated with the sections with 
finest grained sediments found in this core. 

4. Discussion 
 

4.1. Sedimentological characteristics of Core KSGX 24 
 

Core KSGX 24 consists of a very fine sedimentary 
sequence, which potentially provides a continuous record of 
paleoclimate oscillations. It was collected in a relatively deep 
area of the external sector of Ria de Vigo, protected by the 
Cies Islands. It was recovered from an area of muddy 
sediments according to the recent sedimentary cover 
descriptions of Salgado (1993) and Vilas et al. (1995). 

Garcia-Garcia et al. (2005) provides a longer overview of 
the sedimentary evolution of this system since 18 ky BP (last 
glaciation). According to these authors, sediment grain size 
and composition in Ria de Vigo are mainly conditioned by 
the hydrodynamism. Consequently, sandy sediments appear 
close to the ria margins, where currents reach the highest 
speeds. The muddy sediments are located, preferentially, 
along the central axis of the ria, corresponding to the zone 
of greater depth. This area is less influenced by the waves 
and has slower currents along the bottom, enabling the 
deposition of muddy sediments.  

The obstruction caused by the Cies Islands, in the 
external sector, also favors the deposition of fine sediments. 
According to Lantzsch et al. (2009), the accumulation of 
these muddy areas also was influenced by the mid Holocene 
deceleration of the sea-level rise. This phenomenon caused 
a rapid refill of the accommodation space within river 
valleys, and allowed the development of mud deposits in the 
Iberian continental shelf and in some transitional 
environments, such as that in Ria de Vigo.  

Thus, based on the characteristics of particle size of this 
core, we can deduce that low hydrodynamic conditions 
prevailed in the last 3 ka cal BP in the study area. However 
this core presents some variability in grain size. The 
sediments become finer, for instance, in sections ≈134-90 
cm and ≈26-0 cm. 

In these finer sections, geochemical and mineralogical 
changes also are recorded, as well as a slight increase in 
magnetic susceptibility. These grain size variations are 
indicative that the bottom hydrodynamical regime did not 
remain unchangeable in the study area.  

Furthermore, changes in the mineralogical and 
geochemical composition of the sediments may be related to 
hydrodynamic factors, but may also be related to other kinds 
of alterations. For instance, the presence of pyrite (iron 
sulfide) and siderite (iron carbonate) in the composition of 

the sediments of core KSGX 24 indicates the possible 
occurrence of authigenic/ diagenetic processes in the study 
area. 

Pyrite formation can be formed in anoxic sediments 
through diagenetic processes (Froelich et al., 1979; Wilkin 
and Bames, 1996, Neumann et al., 1997, Kastner, 1999). 
Siderite (FeCO3) is a well-known authigenic mineral 
restricted to anoxic non-sulfidic methanic environments 
(Glasby and Schultz, 1999, and references therein). Both 
occur in areas where fine-grained and organic-rich sediments 
are rapidly accumulated and where CO2 is produced as a 
result of organic matter decomposition (Frederichs et al., 
2003) mediated by biological processes (Nealson and 

Saffarini, 1994; Konhauser, 1998). 
Organisms such as mollusks and foraminifera may 

contribute with their shells and tests with carbonates for 
sediment composition. The rocks crossed by the streams and 
rivers that discharge in the Ria de Vigo are poor in 
carbonates, and this is a common feature for most of the 
NW Iberian Peninsula lithology (Julivert et al., 1980). 

Thus, sediments in the Rias Baixas are in general 
impoverished in carbonates (Prego et al., 2012). The 
sediment becomes rich in calcite off-rias, in the nearby 
continental shelf, where its content increases towards the 
continental slope (20-35%, Prego et al., 2012). This is a 
common feature in the western Iberian continental shelf due 
to the biological contribution of bioclasts provided, mainly 
mollusks shells and foraminifera tests and the reduction of 
the dilution by lithogenic particles (Dias and Nittrouer, 1984; 
Martins et al., 2012, 2015b). Thus, whereas the Al is an 
essentially lithogenic element in this core, Ca is mostly a 
biogenic element. Thus, the Ca/Al ratio can be seen as a 
proxy for the relative importance of the contribution in 
biogenic particles to the sediments of this study area. In the 
two main sections where the sediments are finer, ≈134-90 
cm and ≈26-0 cm, the values of the Ca/Al ratio clearly 
decrease (Fig. 4), which indicates a reduction in the biogenic 
component to the sediment. The possible causes of this 
reduction were discussed by Martins et al. (2013b). These 
authors, based on the characteristics of benthic foraminifera 
density and in the composition and structure of their 
assemblages, deduced that these changes were caused by a 
higher supply of organic matter, which led to disoxic 
conditions in the sedimentary environment. 

Detrital minerals deposited in the study area are likely 
provided mainly by river runoff into the Ria de Vigo. Once 
in this system, the coarser particles were deposited near the 
river mouth and the finer ones were probably redistributed 
by the current circulation inside this system. But part of the 
detrital component that composes core KSGX 24 may also 



Journal of Sedimentary Environments 
Published by Universidade do Estado do Rio de Janeiro                                     
1(1): 78-89    January-March, 2016 
doi: 10.12957/jse.2016.21642 

RESEARCH PAPER 
 

 

83 

be supplied from nearby oceanic areas. Chemical elements, 
such as Al, Ce, Co, La, Sc and Th, may be related mostly with 
the detrital component of the sediments. Thus, the variability 
of these element concentrations may indicate changes in 
sediment composition related to the supply of the lithogenic 
component of the sediments. 

Variations in the values of magnetic susceptibility (MS) 
indicate an increased concentration of magnetic minerals. 
However, XRD did not allow the identification of these 
minerals, since they are probably rare and their abundance 
may be below the detection capability of the XRD device.  

Most of the magnetic susceptibility values are negative 
along core KSGX 24, which indicates that the magnetic 
materials are, in fact, not abundant in the study area. 
However this kind of minerals can be supplied from the 
weathering of igneous rocks, quite common in the study area 
and where the dominant magnetic minerals, such as 
magnetite and titanomagnetite minerals, exists.  

The finer grained sections of core KSGX 24, ≈134-90 cm 
and ≈26-0 cm, are marked by relatively high values of: 
detrital mineral content, including phyllosilicates (Fig. 3); 
magnetic susceptibility (Fig. 4); Al, Co and Sc content, and 
Sc/Al (Fig. 4), Co/Al and Co/Th. These sections also are 
characterized by the decline of Ce, La and Th content and 
the decrease of Ce/Al (Fig. 4), Ce/Sc, La/Al (Fig. 4), La/Sc, 
Th/Al (Fig. 4) and Th/Sc values. The finer grained sections 
are also characterized by relatively low sedimentation rate, 
which indicates a lower deposition of sediments. The slight 
rise of magnetic susceptibility (MS) indicates a slight increase 
in magnetic mineral concentration in these sections. 
Aluminum concentrations have significant positive 
correlations with phyllosilicates, which are certainly a source 
of this chemical element. The relationship between Al and 
phyllosilicates was shown by several studies in the Iberian 
Margin (e.g. Araújo et al., 2002; Martins et al., 2013b). 
According to these studies, both Al and phyllosilicates 
generally increase in fine grained sediments. 

In core KSGX 24, significant positive correlations 
between Sc and phyllosilicates also were found, which may 
indicate that these minerals may also be a source of Sc. In 
the Earth's crust, Sc is primarily a trace constituent of 
ferromagnesium minerals (amphibole-hornblende, biotite, 
and pyroxene) and in other minerals such as muscovite 
(Horowitz et al., 1975; Ford et al., 1993; Hedrick, 2010). 
Ferromagnesium minerals commonly occur in igneous 
rocks, which prevail in the continental region around the Ria 
de Vigo (Julivert et al., 1980). 

Cobalt is intrinsically linked with deposit mineralogy 
(Mudd et al., 2013). It can occur mainly as independent 
minerals and preferentially concentrates in cobalt-bearing 

pyrite and pyrrhotite (Qingpeng et al., 2014). It is a 
sulphophile and siderophile element, and widely occurs in a 
variety of forms in many deposits (Qingpeng et al., 2014).  

Elements such as Ce, La and Th are found in a number 
of minerals, the most important being the phosphate mineral 
monazite and bastnäsite, which are common in the 
weathering products of granitoid rocks and pegmatites. It is 
known that by their immobile nature during rock 
crystallization from the original magma, Ce, La and Th are 
preferentially concentrated in felsic rocks. Moreover Co and 
Sc reach in general highest concentrations in mafic and 
ultramafic rocks. These features turns the variability of these 
elements in siliciclastic sediments as potential provenance 
indicators (Taylor and McLennan, 1985; Bhatia and Crook, 
1986).  

The enrichment Ce, La, Th and Ca (also indicated by the 
higher values of Ce/Al, Ce/Sc, La/Sc, La/Al, Th/Al and 
Th/Sc) is recorded mostly in the slightly coarser sections 
220-190 cm and 130-30 cm. In these sections, the 
concentrations of Co and Sc (also indicated by the values of 
Co/Al, Co/Th and Sc/Al ratios) drop significantly. 

The mineralogical and geochemical composition of core 
KSGX 24 also indicate that bottom hydrodynamical 
conditions have changed over the last 3 ka cal BP. However, 
the geochemical alterations along core KSGX 24 may not 
only be related to shifts in hydrodynamical forces, but also 
with alterations in current patterns, which favored the 
deposition of particles from different sediment sources. 

The estimated sediment accumulation rate was highest in 
the core base, but presents a general decreasing trend from 
the bottom toward the top of core KSGX 24. However, 
sediment accumulation rate was relatively reduced in 
sections 185-135 cm and 25-0 cm, where the concentrations 
of Co and Sc increase. These records may indicate not only 
changes in the current patterns and intensity, but also 
modifications in the rainfall regime, which affect the supply 
of sediments by the rivers to the Ria de Vigo, and are related 
to climatic changes. 

Despite these climatic factors, which may have affected 
the deposition of sediments in the external sector of the Ria 
de Vigo, human influence cannot be ruled out on this system 
(Perez-Arlucea et al., 2005). The anthropogenic impacts in 
the last 3000 years was registered in several records related, 
for instance, to mining activities (Kylander et al., 2005), and 
changes in vegetation due to land use (Desprat et al., 2003; 
Martínez-Cortizas et al., 2005). 

 

4.2. The possible influence of climatic oscillations 
 

The geochemical records in core KSGX 24 suggest 
significant changes in sediment composition (Fig. 7). These 
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changes were characterized, for instance, in the periods 
between ≈2.5-2.0 ka cal BP and in the last 500 ka cal BP, by 
lower values of Th/Sc (but also Ce/Sc and La/Sc) and 
higher values of Co/Th. According to Martins et al. (2013b), 
this period was characterized by high supply of organic 
matter to the sediments, probably linked with reinforced 
northerly winds and the prevalence of a stronger upwelling 
regime. These characteristics may be associated with positive 
NAO phases (Oschlies, 2001). 

Climatic oscillations may also have induced alterations in 
the circulation pattern in the nearby continental shelf, in the 
Iberian upwelling system and in oceanic productivity during 
the late Holocene (Álvarez et al., 2005; Bartels-Jónsdóttir et 
al., 2006, Lebreiro et al., 2006). Other studies performed in 
Ria de Vigo also indicate changes in biological productivity 
in this system related to the prevalence of stronger upwelling 
for relatively long periods (Diz et al., 2002; Álvarez et al., 
2005). 

According to our interpretations, the layers enriched in 
Co and Sc, associated with lower sedimentation rates and 
finer grained sediments, may denote a tendency for relative 
dryness, lower bottom hydrodynamism and a deposition of 
materials provided mainly from inner areas of the Ria de 
Vigo. Some rivers that discharge into this system cross areas 
where there are nuclei of mafic and ultramafic rocks (Julivert 
et al., 1980). The erosion of these outcrops may be a source 
of these elements. The concentrations of Co and Sc can 
become more significant when they are being less diluted by 
other lithogenic materials richer in other elements, namely 
Ce, La and Th. 

The periods between ≈3.0-2.5 ka cal BP and ≈1.5-1.0 ka 
cal BP are characterized by the highest values of Th/Sc (Fig. 
7), but also Ce/Sc and La/Sc (Fig. 6). Relatively coarse 
sediments and high sedimentation rates (Figs. 3, 4) may be 
related to a bottom regime relatively more hydrodynamic, 
but also to a higher supply of sediments to the study area. 
These sedimentary characteristics may be linked with a 
rainier period and/or a higher contribution of materials from 
the nearby continental shelf.  

The increase of K-feldspars along with Th/Sc, Ce/Sc and 
La/Sc may indicate a supply of sediment from relatively 
close source areas, since the K-feldspars are one of the more 
readily alterable minerals. These materials are mostly 
provided from the erosion of felsic rocks, which are more 
common in the NW Iberian Peninsula continental areas. 
These regions are crossed by most of the rivers and streams 
that discharge sediments in the Ria de Vigo or by rivers from 
north Portugal. 

The materials supplied by these rivers to the northern 
Portuguese continental shelf are remobilized by waves and 

currents and transported northward, feeding the sedimentary 
deposits of the Galician continental shelf under the winter 
oceanographic regime. These processes are well described by 
Dias et al. (2002a, b). Fine sedimentary materials 
resuspended from coastal oceanic areas may enter the Ria de 
Vigo and be deposited in the outer sector of this system. 
 

 

5. Conclusions 
 

The fine sedimentary sequence that comprises core 
KSGX 24 evidences that in the last 3 ka a weak bottom 
hydrodynamic regime prevailed in the study area. However, 
changes in the sediment grain size, and mineralogical and 
geochemical composition, indicate that the hydrodynamic 
conditions have changed over that period. 

These changes may be related to variations in the pattern 
of prevailing winds and rainfall regime, linked to the NAO 
variability, according to a longer pattern than the current 
one, which displays a decadal tendency. Climate oscillations 
seem to have left a fingerprint in the sediment characteristics 
of the outer sector of Ria de Vigo in the last 3 ka cal BP. 

But the influence of other factors cannot be discarded in 
the sediment grain size, and in the mineralogical and 
geochemical evolution in core KSGX 24, which may include: 
authigenetic and diagenetic reactions; the tendency for sea 
level rise; and lastly, anthropogenic influences in nearby 
continental areas.  
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