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Abstract 
This is the first work performed in the shellfish production 
area located along the Sfax coasts (southern Tunisia) on the 
spatial and temporal patterns of toxic phytoplankton. It 
relates the excessive introduction of phosphorus in coastal 
waters from sediments contaminated with that nutrient. A 
multivariate approach was applyed using data derived from 
the National Phytoplankton Monitoring Program (REPHY) 
(2006-2009). We also examine if there is a direct relationship 
between the abundance of toxic phytoplankton and physical 
and chemical parameters. This study is based on 
phytoplankton composition and abundance, as well as 
physical and chemical data to evaluate the ecological status 
of the Sfax coasts, at shellfish farms. A total of 13 taxa 
included in the Intergovernmental Oceanographic 
Commission (IOC) toxic algae checklist and well-known 
bloom formers were identified in REPHY. Higher nutrient 
spring samples were distinguished from those of lower 

nutrient summer waters. The Redundancy Analysis (RDA) 
separated the toxic species into two groups related to 
nutrients availability. The large amounts of phosphorus and 
organic matter affected the toxic phytoplankton structure, 
due to the pollution of chemical origin underlining an 
organic load hardly biodegradable in Sfax coasts. Many of 
these species recorded in the water column were benthic 
dinoflagellates, a fact that could be explained by the 
resuspension of these organisms by hydrodynamics. The 
knowledge obtained in this study can be used to develop best 
management practices of the sediment compartment as well 
as the water column, which is crucial in the framework of 
any phytoplankton monitoring program. 
 
 

Keywords: Southern coasts of Sfax. Harmful microalgae. 
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1. Introduction 

All phytoplanktonic species, principally dinoflagellates, 
may respond to increased nutrient availability by 
proliferating in number. These microorganisms could be 
good indicatosr for eutrophication in estuarine and coastal 
zones (Chiaudani et al., 1980; Gillbricht, 1988; Hodgkin and 
Hamilton, 1993; Joint et al., 1997; Okaichi, 1997). Nutrient 
input is assumed to result in the rapid growth of 
opportunistic, fast-growing primary producers and the 
accumulation of extra biomass, which may have a negative 

impact on the ecosystems. Other features considered to be 
symptoms of negative impacts of nutrient enrichment 
include blooms of algae or the presence of toxic 
phytoplankton species (Smayda and Reynolds, 2001; Bricker 
et al. 2003). Coastal systems around the world have suffered 
from a variety of environmental problems, including these 
harmful algae blooms (HABs). There is an international 
growing recognition that HABs are affected by human 
activities, but the exact causes are still under debate. In terms 



Feki-Sahnoun et al. 
Journal of Sedimentary Environments 
Published by Universidade do Estado do Rio de Janeiro                                      

4 (4): 458-470. October-December, 2019 
doi: 10.12957/jse.2019.47324 

RESEARCH PAPER 
 

459 
 

of harmful effects, we can consider two types of causative 
organisms: the toxin producers and the high-biomass 
producers. Some HAB species are related to both 
characteristics; of the 4,000 marine planktonic microalgae, 
some 200 can be harmful, and only around 80 have the 
potential to produce toxins (Zingone and Enevoldsen, 
2000). Moreover, toxic events can result from very low 
cellular concentrations of toxicity-causing organisms 
(Reguera et al., 1993). It has been generally recognized that 
data collection based on the characteristics, causes and 
dynamics of HABs especially toxic species, contributes to 
the development of appropriate monitoring programs and 
preventative measures against the occurrence of such 
harmful events in coastal ecosystems (Cembella et al., 2005, 
Ranston et al., 2006, Béjaoui et al., 2019). In fact, the 
National Phytoplankton Monitoring Program (REPHY) 
have been initiated in Gulf of Gabes especially in the coast 
of Sfax since 1996 to ensure public safety by establishing 
tools for early warning of HAB events.  

The present study is the first attempt to investigate the 
composition of harmful microalgae species and their 
seasonal and spatial distribution coupled with environmental 
parameters from the shallow coastal waters of Sfax that had 

been heavily affected by stockpiled phosphogypsum, 
industrial waste and urban development. The possible 
effects of physical, chemical conditions and anthropogenic 
pressure on the phytoplankton community are also 
discussed. 

 
2. Study area 

Sfax is situated at the north shore of the bay of Gabes, 
with Kerkennah islands located in the east. The prevailing 
current returns the pollutants back to the coast, and that is 
why this area is extremely vulnerable to pollution. The coasts 
of Sfax stretch for 200 km, contained 8 different types of 
harbor, from the fish harbor of Ellouza (S1) to the industrial 
phosphate harbor of Skhira (S6) (Fig. 1).  

This area is marked by the presence of the SIAPE 
industry (Industrial Society of Phosphoric Acid and 
Fertilizers), which has released large amounts of 
phosphogypsum wastes for 40 years. These phosphogypsum 
wastes are a significant source of phosphates, chloride and 
sulphates for seawater and may explain the high chemical 
oxygen demand in the surface waters of Sfax (Bahloul et al., 
2015; Drira et al., 2016). 

 

 

Fig. 1. Study area location and geographical localization of  the six sampling stations within the Sfax coasts 

 
Besides the SIAPE industry and its phosphogypsum 

wastes, the Sfax coasts comprises several industrial areas 
related to textiles, tanneries, salt, olive oil, food processing, 
construction materials, ceramics and glass. Hence, several 
industrial effluents are released to the sea in this area. All 
these anthropogenic inputs have been shown to alter the 
marine environment and biodiversity (Zaghden et al., 2005; 
Gargouri, 2006; Aloulou et al., 2012; Rekik et al., 2013; 
Bahloul et al., 2015). This area also suffers from the pressure 
of human activities (Hamza-Chaffai et al., 1997; Tayibi et al., 
2009) and is subjected to increasing eutrophication with 

both red (Louati et al., 2001) and green tides caused by 
coastal Ulva rigida (Ben Brahim et al., 2010). The Sfax area is 
characterized by a benthic community, with an exceptional 
bionomy, made up of extensive magnoliophytes Posidonia 
oceanica and Cymodocea nodosa meadows (Ben Mustapha and 
Hattour, 2013). Their leaves provide suitable substrate for 
the establishment and growth of a number of epiphytic 
microalgae. Previous studies have focused on the sources 
and distribution of hydrocarbons in sediments (Louati et al., 
2001; Zaghden et al., 2005) and marine bivalves (Hamza-
Chaffai et al., 2003).  
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The climate is arid and semiarid Mediterranean largely 
influenced by its mild topography and its maritime exposure 
(Chamtouri et al., 2008). The tide is semidiurnal, with a high 
tide of +1.60 m and a low tide of +0.30 m in spring tide 
(Zaghden et al., 2014). 
 

3. Materials and methods 

Data of Sfax governorate were collected in the 
framework of the National Phytoplankton Monitoring 
Program in the shellfish harvest areas. The program has been 
operating since 1995 with weekly sampling (Fig. 1). The 
monitoring was performed on a regular schedule all year 
round. Sampling stations were selected among the Tunisian 
National Monitoring Stations Network of Phytoplankton 
and Phycotoxins (REPHY) with consideration of existing 
station locations for seashell collection, followed by field 
reconnaissance. We therefore selected six sampling stations 
in Sfax governorate: Sfax (S1), Tabia (S2), Mahres (S3), Ras 
Younga (S4), Jaboussa (S5) and Skhira (S6) (Fig. 1) (Table 1). 
Stations S1, S2, S3 and S4 were exposed to industrial 
effluents as heavy metal and organic compounds (Zaghden 
et al., 2014) whereas S5 and S6 were affected by the 
petroleum pollution from the transport harbor (Kobbi-
Rebai et al., 2013). The time period of the dataset used for 
the analysis was from 2006 to 2009.  

Water for phytoplankton identification (1l) was collected 
with a Van Dorn bottle at 1-m depth. Temperature and 
salinity were measured for each water sample using a 
Handheld Multiparameter Instrument: WTW Multi 
340i/SET. Samples were fixed with lugol (4%) solution and 
phytoplankton was counted using an inverted microscope 
using the Utermöhl’s method (Utermöhl, 1958). Cell counts 
were carried out under an inverted microscope (Olympus 
CK40). Identification of algal taxa was achieved according to 
Tregouboff and Rose (1957), Huber-Pestalozzi (1968), 
Dodge (1985), Balech (1988) and Tomas et al. (1996). 

Environmental variables in the water column were 
measured. Temperature, salinity and pH were measured at 
both surface and near the bottom using a multiparameter kit 
(Multi 340 i/SET; sensitivity (±1 digit) especially important 
for pH (±0.01 pH). For nutrient concentrations, samples of 
125 mL were kept immediately upon collection at −20 °C, 
in the dark. The inorganic nutrients (nitrite: NO2

-, nitrate: 
NO3

-, ammonium: NH4
+, orthophosphate: PO4

3- and 
silicate: Si (OH)4) were analyzed with a BRAN and LUEBBE 
type 3 autoanalyzer (APHA, 1992). 

The statistical analysis was based on multivariate 
methods aiming to test the relationship between the seasonal 
harmful phytoplankton composition, in terms of species 
abundance, and the environmental variables. 

Up to 13 species or genera of harmful phytoplankton 
were identified (Table 2). In order to improve the 
multivariate approach, species with low relative abundance 

(<2%) in all analyzed water samples were not considered in 
the statistical analysis (Table 2). So, the analysis included the 
following taxa of 12 dinoflagellate: Akashiwo sanguinea, 
Alexandrium spp., Alexandrium minutum, Amphidinium carterae, 
Coolia monotis, Karenia selliformis, Karlodinium veneficum, 
Prorocentrum concavum, Prorocentrum lima, Prorocentrum micans, 
Prororcentrum minimum, Prororcentrum rathymum and the diatom 
Pseudo-nitzschia spp. The response matrix was log-
transformed. Then, inferential analyses were completed 
using Redundancy Analyses (RDA, Ter Braak and Smilauer, 
2002) to estimate how much variation in the response matrix 
was attributed to the environmental variables. This analysis 
was performed using R software (R Development Core 
Team, 2017). 
 

3. Results 

3.1. Environmental factors and phytoplankton 

The seasonal distributions in the surface layer of 
temperature, salinity, pH and suspended matter are displayed 
in Figure 2. Temperature tended to increase from winter to 
summer and showed a small decline in autumn compared to 
summer. The temperature was in the range of 12.3–30.08 °C, 
with the lowest value observed in winter and the highest in 
summer (Figure 2). Salinity varied from 37.8 in winter to 59.8 
in summer (Figure 2). The transition from autumn to spring 
exhibited a net decrease in salinity, whereas in summer the 
salinity increase was more pronounced. The value of pH was 
higher in summer (8.69) than that in autumn (5.6) (Figure 2).  

Nitrite and ammonium concentrations showed a 
considerable increase during spring and autumn. The highest 
nitrate concentrations were observed in summer and 
autumn. Overall, total nitrogen concentrations increased 
significantly from 10.55 μmol/L in spring to 51.85 μmol/L 
in summer. Total phosphate (T-P), orthophosphate and 
silica concentrations were higher during spring and reached 
respectively 29.88 μmol/L, 11.59 μmol/L and 36.73 μmol/L 
(Figure 2).  

Table 2 shows the potentially harmful phytoplankters 
that were identified. Most of them are included in the 
Intergovernmental Oceanographic Commission (IOC) toxic 
algae checklist (Moestrup et al., 2008). Another was well-
known bloom formers (Fukuyo et al., 1990). The list includes 
12 dinoflagellates and one diatom.  

The spatial seasonal cell abundances of selected harmful 
phytoplankton are shown in Figs. 3 and 4. Higher cell 
abundances of dinoflagellates (Akashiwo sanguinea, 
Alexandrium minutum, Amphidinium carterae, Coolia monotis, 
Karenia selliformis, Karlodinium veneficum, Prororcentrum minimum, 
Prorocentrum micans and Pseudo-nitzschia spp.) were measured 
in winter and autumn. On the other hand, the spatial cell 
abundances of selected harmful phytoplankters show that 
abundances of Akashiwo sanguinea, Alexandrium minutum, 
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Fig. 2. Seasonal variation of  physical (temperature, salinity and pH) and chemical (silicate, nitrite, nitrate, ammonia, orthophosphate) 

parameters at Sfax coasts. 
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Fig. 2. (cont.) Seasonal variation of  chemical (total nitrogen and total phosphorus) parameters at Sfax coasts. 

 

Tab. 1. Mean ± SD of physical and chemical parameters in 6 sampling stations along the Sfax coasts 

Stations Longitude 
Latitude 

Temperature  
(°C) 

Salinity  NH4
+  

(µmol l-1) 
NO2

- 
(µmol l-1) 

NO3
-  

(µmol l-1) 
PO4

3- 
(µmol l-1) 

TN 
(µmol l-1) 

T-P 
(µmol l-1) 

Si (OH)4 

(µmol l-1) 

S1 34°47'35" 
10°51'36" 

22.3±2.27 42.10±1.65 1.56±0.72 0.97±0.95 3.58±3.13 1.36±0.99 20.99±3.98 4.62±0.87 2.43±1.80 

S2 34°40'12" 
10°44'28" 

22.5±2.14 38.82±1.29 2.13±0.54 0.43±0.18 2.13±0.56 0.60±0.18 19.57±1.06 5.21±0.61 6.15±4.12 

S3 34°31'16" 
10°30'00" 

22.5±2.73 38.07±1.11 1.76±1.09 0.54±0.48 3.02±2.11 1.30±1.14 20.02±3.23 4.70±0.81 1.65±1.41 

S4 34°24'58" 
10°21'40" 

22.4±2.04 39.64±0.93 3.65±0.70 0.35±0.11 1.86±0.33 0.71±0.02 20.16±1.52 4.91±0.18 18.22±17.44 

S5 34°20'49" 
10°10'58" 

22.4±2.13 38.67±1.22 3.25±1.28 0.19±0.02 1.48±0.05 1.23±0.37 21.49±0.51 4.83±0.61 19.68±18.88 

S6 34°19'34" 
10°09'25" 

22.9±2.11 38.65±1.07 2.60±1.45 0.47±0.18 2.43±2.41 1.01±0.24 21.02±1.11 4.71±0.56 22.14±22.17 

 

 
and Amphidinium carterae and Coolia monotis had higher 
concentrations at station S5. Alexandrium spp., Prororcentrum 
minimum and Prororcentrum lima peaked at station S2 and; 
Karenia selliformis proliferate at stationS1. Karlodinium veneficum, 
Prorocentrum concave and Prorocentrum rathymum showed a 
remarkable increase at station S4. Pseudo-nitzschia spp. and P. 
micans were present essentially in station S6. 

 

3.2. Multivariate analysis 

The bi-plot of the Redundancy Analyses results (RDA) is 
shown in Fig. 5 for the four seasons. The variables included 
in the autumn RDA analysis explained 52.8% of the sample 
variability. F1 component axis, which extracted 40.07% of 
the variability, selected positively the first group; Karlodinium 
veneficum, Prorocentrum rathymum, Alexandrium spp. and Pseudo-
nitzschia spp. are related to pH, NH4

+, NO3
-, NO2

- and T-N. 
F1 component axis selected negatively the second group, 
with Coolia monotis, Karenia selliformis, Prorocentrum lima, 
Akashiwo sanguinea, P. micans and Amphidinium carterae 

influenced by temperature, salinity, PO4
3-, Si(OH)4) and T-

P. 
The spring RDA analysis allowed the discrimination of 

two groups around the components of the F1 and F2 axes 
explaining 69.33% of the variance in the Sfax governorate. 
The F1 axis (51.1%) positively selected group formed by 
Karesel, Pseusp, Prorlim, Prormin, Coolmon, Prorcon and 
Alexmin correlated to T-P, PO4

3-, pH, temperature and 
Si(OH)4) in stations S2, S3, S5 and S6. This axis negatively 
selected the group formed by Karlven, Akassan and Prormic 
correlated to NH4

+, NO2
-, NO3

-, T-N and salinity in stations 
S1 and S4. 

The F1 component axis of the summer RDA analysis 
explained 62.8% of the sample variability, selected positively 
the first group of the one species Karesel correlated with 
Si(OH)4), PO4

3-and pH in stations S2, S3 and S6. The F1 axis 
(41.2%) selected negatively the second group of Prormic, 
Alexmin, Karlven and Amphcar correlated with T-N, pH, 
temperature, salinity, NH4

+, NO3
- and NO2

- in stations S1 
and S6.
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Fig. 3. Spatial variation of  potentially toxic phytoplankton at sampled stations along the Sfax coasts 

 
 

Tab. 2. List of  harmful phytoplankters included in the IOC toxic algae checklist and defined in the Sfax coasts with their relative 
abundances 

Taxa Code Relative abundances (%) 

Dinophyceae 

Akashiwo sanguine (Hirasaka, 1924) Hansen et Moestrup, 2000 Akassan 4 

Alexandrium spp. Halim emend. Balech, 1989 Alexmin 3 

Alexandrium minutum Halim, 1960 Alexsp 2 

Amphidinium carterae Hulburt, 1957 Amphcar 3 

Coolia monotis Meunier, 1919 Coolmon 5 

Gymnodinium catenatum Graham, 1943 
 

0 

Karenia selliformis Haywood, Steidinger & MacKenzie in Haywood et al., 2004 Karesel 46 

Karlodinium veneficum (Ballantine) Larsen in Daugbjerg et al., 2000 Karlven 10 

Ostreopsis cf. ovata Fukuyo, 1981 
 

0 

Prorocentrum concavum Fukuyo, 1981 Prorcon 2 

Prorocentrum lima (Ehrenberg, 1860) Stein, 1975 Prorlim 2 

Prorocentrum micans Ehrenberg, 1834 Prormic 17 

Prororcentrum minimum (Pavillard, 1916) Schiller, 1931 Prormin 3 

Prororcentrum rathymum Loeblich III, Sherley et Schmidt, 1979 Prorrat 2 

Diatoms 

Pseudo-nitzschia spp. (H. Peragallo, 1900) Pseusp 3 
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Regarding RDA winter, axis 2 (40.3%) positively selected 
the group of Prormic, Akassan, Alexsp and Coolmon which 
is correlated with T-N, NO3

- and Si(OH)4 in stations S2, S4 
and S5. Axis 2 negatively selected the group of Prormin, 
Karlven, Prorcon and Karesel correlated with pH, salinity, 
T-P, NO2

- NH4
+ NO3

- in stations S1, S3 and S6. 
 

4. Discussion 

The harmful phytoplankters observed in this study are 
representative of both toxin producers and high biomass 
bloom-forming species (Masóand Garcés, 2006). Among 
them, some dinoflagellates are PSP, DSP or Ciguatera fish 
poisoning producers; the Pseudo-nitzschia diatoms are DA 
producers; and Karenia selliformis has been noted as a 
Gymnodimine producer in New Zealand (Haywood et al., 
2004) and the Gulf of Gabès (Ben Naila et al., 2012). The 
armored dinoflagellate genus Alexandrium Halim, 1960, 
known to produce paralytic shellfish poisoning (PSP) 

saxitoxins and a number of related derivatives, comprises 
more than 30 species (Balech, 1995; Moestrup et al., 2002) 
distributed worldwide (Anderson et al., 1994, 2012) and 
defined also in the Gulf of Gabes (Abdennadher et al., 2012). 
Some of them have caused fish kills or produced diverse 
nuisance effects on the whole ecosystem. Blooms of some 
of these species have been previously noticed in the Gulf of 
Gabès (Feki et al., 2008). These blooms always took place in 
heavily modified and shallow environments close to the 
shoreline (Abdennadher et al., 2012). The results of this 
study revealed a large distribution of these harmful species 
along the whole littoral, although no high-biomass blooms 
were observed over this time. The location and nature of 
sampling sites at a certain distance to the shoreline as very 
shallow (<1 m in depth) near shore transect could explain 
the absence of these blooms. It seems to be a general trend 
that high-biomass blooms observed up until now in coastal 
Sfax waters were restricted to confined and shallow waters 
closer to the shoreline.

 

Fig. 4. Seasonal variation of potentially toxic phytoplankton within the Sfax coasts 

 
Our results demonstrated distinct spatial and seasonal 

contrasts. The seasonal cycle in temperature in the six 
sampled stations is typical of the arid to semi-arid zone of 
the northern hemisphere (Bel Hassen et al., 2009), with a 
warming starting in spring and a maximum summer, 
followed by a cooling trend reaching its minimum in winter. 
The water salinity increased concomitantly with the increase 
in temperature. pH decreased along with the diminution in 
temperature and salinity in autumn, winter and spring. The 
low pH values can reasonably be attributed to the industrial 

activity and seems to be influenced by seasonal conditions. 
We found high nutrient concentrations essentially in spring 
and autumn. 

The results showed that water temperature seems to be 
the main physicochemical factor affecting the proliferation 
of most harmful microalgae (Fig. 5). This result was also 
determined by Loukil-Baklouti et al. (2018) in the South of 
Sfax coasts. Most potentially toxic dinoflagellates recorded 
in Sfax coasts were correlated with several abiotic 
parameters, in particular with water temperature.  
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Fig. 5. Redundancy Analyses results (RDA) that combined potentially toxic phytoplankton, sampled stations, physical and chemical 
parameters in A) autumn, B) spring, C) summer and D) winter. 

 
Besides, A. minutum outbreaks were correlated with sea 

surface temperature at Jaboussa “S5” (Abdennadher et al., 
2012; Loukil Baklouti et al., 2018). Furthermore, several 
studies have reported that the temperature was the main 
environmental factor controlling harmful microalgae bloom 
occurrence and physiological processes (Laabir et al., 2013). 
The studies undertaken by Dammak-Zouari et al. (2009) and 
Feki et al. (2013) have also highlighted the effect of 
temperature on harmful microalgae proliferations, in 
summer, in the Gulf of Gabes. Another relevant factor 

influencing the autumn distribution of studied species 
especially P. lima, P. micans and A. minutum was salinity. These 
species seem to tolerate salinity (Steidinger and Tangen, 
1996; Loukil Baklouti et al., 2018). In fact, Prorocentrum 
species have been reported in hypersaline lagoons (> 90) in 
the Caribbean islands and it was described as preferring high 
salinity coastal areas (Johnson and Allen, 2005). The main 
inference we can draw from these results is that the 
atmosphere temperature might enhance evaporation leading 
to a salinity increase because of the shallowness of the Gulf 
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of Gabes. Thus, the effect of salinity on toxic species might 
not be a direct cause-and-effect relationship but might 
involve temperature as the main driving parameter. Similar 
results were also found in Tunisian waters (Aissaoui et al., 
2014; Armi et al., 2012) and in other Mediterranean and 
northeast Atlantic ecosystems, for instance, along the Greek 
coast (Aligizaki et al., 2009) and the French Atlantic and 
English Channel coasts (Husson et al., 2016). 

As regards to the analyses of nutrient concentrations, our 
results were quite similar to those reported in previous 
studies in the Gulf of Gabes (Kobbi- Rebai et al., 2013; Ben 
Salem et al., 2015). The terrestrial inputs of phosphate 
originating from chronic uncontrolled discharges generated 
by the chemical industry implemented in the Gulf of Gabes, 
seem to be involved in the increased phosphate 
concentrations (Ben Salem et al., 2015). Moreover, the 
studied area is urbanized and the coastline is industrialized 
and characterized by eutrophic systems attributed to 
anthropogenic inputs (Zaghden et al., 2014). The presence 
of anthropogenic nutrients can also control the 
phytoplankton community structure and have an important 
role in promoting harmful algae blooms (Wells et al., 2015).  

Our findings showed the presence of potentially toxic 
epibenthic dinoflagellate (Benthic HABs) in the water 
column. These microphytobenthic organisms can be 
transferred into the water column, mainly through advection 
and bio-perturbation, particularly in shallow waters (Allison, 
2000). The Modified Atlantic Water (MAW) flows within the 
continental shelf area between 50 and 100 m isobaths during 
winter (Bel Hassen et al., 2009) but exhibits a weak advection 
as summer stratification is established (Bel Hassen et al., 
2008). This MAW induced water mixing, accentuated by 
shallow sampling depth, might result in sediment 
resuspension and, therefore, could increase the reproduction 
of epiphytic organisms during winter and spring (Feki-
Sahnoun et al., 2014). 

The analysis in Sfax coasts revealed that some potentially 
toxic dinoflagellate species were dominated by epiphytic 
microalgae communities such as Amphidinium carterae, P. 
rathymum, P. concavum, P. lima and Coolia monotisas highlighted 
in previous investigations in Gulf of Gabes (Ben Brahim et 
al., 2013). These epiphytic microalgae were present in the 
water column (Abdennadher et al., 2017; Ben Brahim et al., 
2013) and attached to phanerogamic plants represented by 
Posidonia oceanica and Cymodocea nodosa (Ben Brahim et al., 
2013; Mabrouk et al., 2014). These species are significantly 
affected by resuspension and deposition events which 
determine the vertical distribution of the organisms through 
the interface and the adjacent water column (Queiroz et al., 
2004; Leles et al., 2014). Therefore, the succession of high 
and low tides gives rise to a series of oscillations 
characterizing the short-term dynamics of intertidal benthic 
microalgae biomass (Blanchard et al., 2001). 

Silicate also influenced the abundance of P. lima in the 
autumn at S1 and S2 and in spring at S2 to S6. A study 

revealed that P. lima was plentiful in places loaded with 
silicates (Parsons and Preskitt, 2007). This species has been 
reported as a widespread dinoflagellate in many coastal 
waters and estuaries around the world, generally in spring 
and summer (Levasseur et al., 2003), in the northern coasts 
of Tunisia (Aissaoui et al., 2014), in the Fleet lagoon in the 
UK (Foden et al., 2005), in Greek coastal waters (Aligizaki 
et al., 2009) and in the Adriatic Sea (Ingarao et al., 2009). 
Prorocentrum lima correlated also with orthophosphate 
concentration and temperature as demonstrated by Loukil-
Baklouti et al. (2018). Similar findings on the correlation with 
the temperature were found in Bizerte lagoon (Sahraoui et 
al., 2013), in the Gulf of Tunis (Aissaouiet al., 2014) and in 
the western Adriatic (Ingarao et al., 2009). Furthermore, P. 
lima was reported in several Mediterranean ecosystems 
during August in the Gulf of Tunis (Turki, 2005) and in the 
Tunis northern lagoon during spring and summer seasons 
(Armi et al., 2012). 

The correlation founded between A. minutum and 
phosphate in spring can be attributed to the increase of 
phosphorus released by industrial and anthropogenic 
sewage. Previous works have shown that A. minutum blooms 
occur primarily in coastal waters and nutrient discharge areas 
(Abdennadher et al., 2012; Loukil-Baklouti et al., 2018), 
while other authors found that phosphorus deficiency in 
coastal areas can favor the development of species of the 
genus Alexandrium (Imai et al., 2006). 

The abundance of Coolia monotis was correlated with 
phosphate in autumn and spring as well as with nitrate and 
total nitrogen during winter. The same results were provided 
along the Gulf of Gabès (Feki-Sahnoun et al., 2019) and 
North Lake of Tunis (Armi et al., 2010). During the study 
period and in all studied areas, the highest C. monotis 
abundance was recorded in winter, spring and extended until 
June (Feki-Sahnoun et al., 2014, 2019; Loukil-Baklouti et al., 
2018). According to Aligizaki and Nikolaidis (2006), the high 
concentrations of C. monotis was detected during the winter 
months with the presence of a summer peak on August in 
the North Aegean Sea (Greece), while, Armi et al. (2010) 
showed significant blooms of C. monotis occurring in late 
spring and early summer in the Lake of Tunis (Northern 
Tunisia). This correlation goes along with the statement that 
C. monotis species can use a range of organic and inorganic 
nitrogenous substrates (Armi et al., 2010). 

Some potentially toxic diatoms, such as Pseudo-nitzschia 
spp. was occurred in autumn and spring seasons and 
correlated with nitrogenous nutrients in S3 to S6 as 
highlighted by Loukil-Baklouti et al. (2018). Nitrogen were 
the main nutrients associated with proliferations of Pseudo-
nitzschia spp. in northwestern US (Trainer et al., 2012). 
Various studies on Pseudo-nitzschia species in the Bizerte 
Lagoon (northern Tunisia) revealed a positive correlation 
between their abundance and nitrate concentration during 
late spring (Sahraoui et al., 2012). 
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The toxic dinoflagellates Karenia selliformis correlated with 
phosphate and silicate in autumn, summer and spring. Many 
studies show that K. selliformis occur in these seasons along 
the Gulf of Gabes (Feki et al., 2008; Feki-Sahnoun et al., 
2017, 2018). Water temperature was correlated with species 
in autumn, spring and winter. A negative relationship 
between K. selliformis and temperature was highlighted in 
summer. This corroborates the results showed in Feki-
Sahnoun et al. 2017. The correlation defined between the 
species and the phosphorus form through the year is due to 
discharge from large-scale phosphate production plants in 
Sfax and Gabes (Béjaouiet al., 2004; Ghannem et al., 2010), 
which can reach 12,000 ton per day. 

 

Conclusion 

Our study provides the monthly spatial distribution of 
harmful microalgae in the water column revealing high 
density of harmful microalgae on the coasts of Sfax. This 
increase was justified by the nutrient availability especially in 
spring. Our results clearly confirmed that the physical 
parameters influenced the distribution of most potentially 
toxic dinoflagellate species. The benthic dinoflagellates 
presence was justified by the continual mixing of the water 
column generating a sediment resuspension process that is 
favorable to the resuspension of benthic dinoflagellate from 
sediment and its presence in the water column. This study 
highlights anthropogenic inputs in the surface waters of the 
coastal area of Sfax. These anthropogenic inputs 
undoubtedly have substantial impacts on structure and 
functioning of marine ecosystems in the Sfax coastal area. 
For this reason, this study emphasizes the need for an 
effective treatment and management measures for industrial 
effluents and other anthropogenic discharges into the coastal 
waters so as to reduce the impact of pollution. 
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