
Journal of Sedimentary Environments 
Published by Universidade do Estado do Rio de Janeiro                                      
4 (4): 360-368. October-December, 2019 
doi: 10.12957/jse.2019.46128 

RESEARCH PAPER 

361 
 

 
EVALUATION OF THE BEST-FIT PROBABILITY OF DISTRIBUTION AND RETURN 

PERIODS OF RIVER DISCHARGE PEAKS. CASE STUDY: AWETU RIVER, JIMMA, ETHIOPIA 

 

TOLERA ABDISA FEYISSA 
1* AND NASIR GEBI TUKURA

1 

1 Jimma University, Faculty of Civil and Environmental Engineering, Department of Hydraulic and Water Resources 
Engineering, Jimma, Ethiopia 

 
* CORRESPONDING AUTHOR, toleraabdissa@yahoo.com 

 
Received on 3 October 2019 
Received in revised form on 20 October 2019 
Accepted on 23 October 2019 
 
Editor: Maria Virginia Alves Martins, Universidade do Estado do Rio de 

Janeiro, Brazil 

Citation: 
Feyissa, T.A., Tukura, N.G., 2019. Evaluation of the best-fit 

probability of distribution and return periods of river discharge peaks. 

Case Study: Awetu River, Jimma, Ethiopia. Journal of Sedimentary 

Environments, 4 (4): 361-368. 

 

 
Abstract 

The identification of the best distribution function is 
essential to estimate a river peak discharge or magnitude of 
river floods for management of watershed and ecosystems. 
However, inadequate estimation of the river peak discharge 
and floods magnitude may decrease the efficiency of water-
resources management, resulting in soil erosion, landslides, 
environmental damage and ecosystem degradation. To 
overcome this problem in hydrology, different methods 
have been employed, applying a probability distribution.  
In this study to determine the suitable probability of 
distribution for estimating the annual discharge series with 
different return periods, the annual mean and peak 
discharges of the Awetu River (Jimma, Ethiopia) over a 24 
years’ time period have been collected and used. After the 
homogeneity and consistency test, data were analyzed to 
predict extreme values and were applied in seven different 

probability distribution functions by using L-moment and 
easy fit methods. Then, three goodness of fit tests, 
Anderson-Darling (AD), Kolmogorov-Smirnov (KS), and 
Chi-Squared (x2) tests, were used to select the best 
probability distribution function for the study area. The 
obtained results indicate that, Log-normal distribution 
function is the best-fit distribution to estimate the peak 
discharge recurrence of the Awetu River. The 5-year, 10-
year, 25-year, 50-year, 100-year and 1000-year return periods 
of discharge were calculated for this river. The results of this 
study are useful for the development of more accurate 
models of flooding inundation and hazard analysis. 
 
 
Keywords: River Discharge. Goodness of fit. Log Pearson 
Type III. Probability Distribution. 

 
 
1. Introduction 

The variability of precipitation and rivers floods has long 
been recognized as an important factor related to water 
resources use and development. In the past, this variableness 
has led to an extensive study of precipitation and river 
floods, especially with respect to their dependence on a large 
number of climatic and physiographic factors (Markovic, 
1965). Due to improperly estimation of extreme runoff 
generated from upstream catchment area, large amounts of 
sediment are transported downstream, affecting the 
environment and the water ecosystem. 

Sedimentation is a process by which soil particles are 
eroded and transported by running water or other transport 
agent and deposited in sedimentary basins and water bodies, 
such as reservoirs and rivers. It is a complex process that 
varies with watershed sediment yield, rate of transportation 
and mode of deposition (Ezugwu, 2013). Sediment 

deposition reduces the storage capacity and life span of 
reservoirs and contributing to increased flooding (Eroglu et 
al., 2010). Soil erosion adversely hinders the growth of 
plants, agricultural yields, water quality and recreation. It is a 
key cause of soil degradation as it occurs naturally on all 
lands (Bai et al., 2008; Li and Wei, 2011; Ding et al., 2015). 
Soil erosion, basically caused by water and wind, contributes 
to significant level of yearly soil loss. 

Extreme environmental events, such as floods, 
rainstorms, strong winds, and droughts, have severe 
consequences on environment. Planning for water and 
climate issues such as waterworks design, reservoir 
management, pollution control and risk calculation all 
depends on knowing the frequency of extreme events 
(Einfalt, 1998). In hydrology, it is impossible to determine 
the time of occurrence of phenomena such as floods and 
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maximum river flows, but it is possible to investigate the 
occurrence of previous events and obtain the average 
probability of their occurrence. Calculation of the mean 
probability of occurrence or floods mean return periods can 
help to solve many problems. For example, in flood control 
projects it is possible to calculate the resulting average annual 
damage from flooding and also the design of structures such 
as dam spillway conducts, regarding the probability of 
flooding (Mahdavi, 2010). 

Frequency analysis of extreme flood values, the 
magnitude of this phenomenon and its frequency also 
provide important information for determining risk and 
assessing reliability criteria in the design of structures. This 
analysis provides event frequency values that are greater than 
the original values calculated during the period of data 
record. This phenomenon can be defined using the concept 
of event return period (Hadian et al., 2011). 

Proper assessment of flood frequency distribution is one 
of the main problems faced by hydrologists. This issue is 
very important because different distributions can produce 
significantly different estimates for the same return period 
(Coulson, 1991). In order to establish the appropriate 
probability distribution function, several investigations 
were previously performed (e.g., Cunanne, 1973; Stedinger, 
1980; Stedinger et al., 1992; Alam and Khan, 2014). 

In the study area, every year there are several floods 
of the Awetu River that cause damage to houses, 
farmland and so on. This work aims to obtain statistical 
distributions in discharge series with different return 
periods for the Awetu River. Maximum and average 
annual Awetu River flow discharges were collected over 
a period of twenty-five years and, after outlier test, 
Goodness of fit test, often used to select appropriate 
probability distribution for frequency analysis, was applied. 
 

2. Description of study watershed 

The Awetu River basin is located in South - West part of 
Ethiopia, in Oromia regional state, Jimma Zone, at about 
360 km of Addis Ababa. Its watershed is one of the sub-
basins of the Omo-Gibe River and is located in the highest 
portions of the Boye River sub-basin. Awetu River basin is 
located between 7º40'- 7º46' N latitudes and 36º46'- 36º54 E 
longitudes as shown in Figure 1. It covers a total drainage 
area of 15,975 km2 in the Omo-Gibe River basin.  

The mean annual rainfall of the study area is 1130.2 mm. 
At Awetu River basin high rainfall was recorded in May to 
September, whereas the lower rainfall was recorded in 
October to April in all stations. Among these 38.33% falls in 
a dry season.  

 

3. Methodology 

Monthly stream flow data for 24 years (1992-2016) were 
collected by the Ethiopian Ministry of Water irrigation and 
Energy, Hydrology Department (Appendix 1). Data were 

arranged on monthly and yearly basis and were treated 
statistically. 

For selecting the best-fit probability distribution for a 
certain location, the choice of probability distribution 
models is important. 
 

3.1 Selection of candidate probability distributions 

Probability distributions are basic concepts in statistics. 
The results of statistical experiments and their probabilities 
of occurrence are linked by probability distributions. 
Discharge data from Awetu River were evaluated with five 
probability models to find the best-fit model.  

The applied probability models include the Normal (N), 
Log-normal (LN), Log-Pearson type 3 (LP3), General 
extreme value and Gumbel (EVI) probability models. 
 

3.1.1 Normal Distribution (N) 

The Gaussian or N distribution is often applied in annual 
precipitation and runoff analysis (Markovic, 1965). The two 
moments mean µ and variance σ2, are the parameters of the 
normal distribution.  

The probability density function (pdf), f(x) and 
cumulative distribution function (cdf), F(x) for a normal 
random variable x are expressed as, 

𝑓(𝑥) =
1

𝜎√2𝜋
𝑒𝑥𝑝 [−

1

2𝜎2
(𝑥 − 𝜇2)]      (𝟏) 

𝐹(𝑥) =
1

𝜎√2𝜋
∫ (𝑒𝑥𝑝 [−

1

2𝜎2
(𝑥 − 𝜇2)])

∞

−∞

𝑑𝑥(𝟐) 

In the normal distribution, the maximum value of 
expected discharge (XT) corresponding to any return period 
(T) can be calculated using Eq. (3): 

𝑋𝑇 = �̅�(1 + 𝐶𝑣𝐾𝑇)        (3) 

Where XT is the maximum value of expected rainfall, 𝑋 ̅is 
the mean, Cv is the coefficient of variation and KT is the 
frequency factor, which depends on the return period and 
probability distribution. KT is calculated using the following 
equation. 

𝐾𝑇 =
𝑋𝑇 − 𝜇

𝜎
       (𝟒) 

The frequency factor (KT) is the same as the standard 

normal variate ‘z’, which is calculated using Eq. (5). 

Z = W −
2.515517 + 0.802853w + 0.0110328w2

1 + 1.432788w + 0.189269w2 + 0.001308w2
 (5) 

 

From Eq. (5), can be expressed as follows: 

    𝑤 = [𝑙𝑛 {
1

𝑝2
}]

1
2

(0 < 𝑝 ≤ 0.50)      (𝟔) 

Where ‘p’ is the exceedance probability (P=1/T). When 

P > 0.5, 1 - P is substituted for ‘P’ in eq. (6).
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Fig. 1. Location map of the study area. 

 

3.1.2 Log-Normal Distribution (LN) 

The probability density function (pdf), f(x) and 
cumulative distribution function (cdf), F(x) of the 2-
parameter Log-normal (LN2) are expressed as: 

𝑓(𝑥) =
1

𝑥𝜎𝑦√2𝜋
𝑒𝑥𝑝 [−

1

2𝜎𝑦
2

(ln(𝑥) − 𝜇𝑦)
2

]    (𝟕) 

𝐹(𝑥) =
1

𝜎𝑦√2𝜋
∫ (

1

𝑥
𝑒𝑥𝑝 [−

1

2𝜎𝑦
2

(ln(𝑥) − 𝜇𝑦
2)])

𝑥

0

𝑑𝑥  (𝟖) 

The log-normal distribution assumes that 𝑌 =  𝑙𝑛 (𝑋); 
therefore, the maximum value of expected discharge (XT) 
corresponding to any return period (T) can be calculated 
using Eq. (9): 

𝑋𝑇 = 𝑒𝑥𝑝 (𝑌𝑇)            (𝟗) 

𝑌𝑇 =  �̅�(1 + 𝑐𝑣𝑦𝐾𝑇) 

𝐾𝑇 =
𝑌𝑇 − 𝜇𝑦

𝜎𝑦

 

Where �̅� and 𝑐𝑣𝑦 are the mean and coefficient of 

variation of Y, respectively. 𝐾𝑇  is the frequency factor, 
which is the same as the standard normal variate and can be 
computed using Eq. (4). 

3.1.3 Log-Pearson Type 3 (LP3) 

The Log-Pearson Type 3 (LP3), another gamma family 
distribution, describes a random variable whose logarithm 
follows the P3 distribution. The probability density function 
(pdf), f(x) and cumulative distribution function (cdf), F(x) of 
the LP3 are expressed as: 

𝑓(𝑥) =
1

|𝛼|Γ(𝛽)
[(

ln(𝑥) − 𝜉

𝛼
)

𝛽−1

] 𝑒𝑥𝑝 [− (
ln(𝑥) − 𝜉

𝛼
)]  (𝟏𝟎) 

𝐹(𝑥) =
1

|𝛼|Γ(𝛽)
∫

1

𝑥
[(

ln(𝑥)−𝜉

𝛼
)

𝛽−1

] 𝑒𝑥𝑝
𝑥

0
[− (

ln(𝑥)−𝜉

𝛼
)] 𝑑𝑥(11) 

In the log-Pearson type 3 distributions, the maximum 
value of expected discharge (XT) corresponding to any 
return period (T) can be calculated using Eq. (12) 

𝑋𝑇 = 𝐴𝑛𝑡𝑖𝑙𝑜𝑔(𝑋)          (𝟏𝟐) 

𝐿𝑜𝑔(𝑋) =  �̅� + 𝐾𝑇𝑆𝑑 

𝐾𝑇 =
2

𝑐𝑠

[{(𝑍 −
𝑐𝑠

6
)

𝑐𝑠

6
+ 1}

3

− 1] 

Where   �̅�,  𝑺𝒅 and 𝒄𝒔 are the mean, standard deviation 
and coefficient of skewness of discharge data, respectively, 

and 𝑲𝑻 is the frequency factor. 
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3.1.4 Gumbel Distribution 

The extreme value type 1 distribution, also called the 
GUM distribution, is often used to represent a maximum 
process, for example the maximum rainfall or flood 
discharge, or the lowest stream flow or pollutant 
concentration. The pdf and cdf: 

𝑓(𝑥) = (
1

𝛼
) 𝑒𝑥𝑝 [− (

𝑥 − 𝛽

𝛼
) − 𝑒𝑥𝑝 (− (

𝑥 − 𝛽

𝛼
))]     (𝟏𝟑) 

𝐹(𝑥) = 𝑒𝑥𝑝 [−𝑒𝑥𝑝 (−
𝑥 − 𝛽

𝛼
)] 

𝛼 = 0.7797𝜎,    𝛽 = 𝜇 − 0.5772𝛼 

Where α is the scale parameter and β is the location 
parameter for the GUM distribution. 

The Gumbel distribution can be used to calculate the 
maximum value of expected discharge (XT) corresponding 
to any return period (T) using Eq. (14): 

𝑋𝑇 = �̅�(1 + 𝐶𝑣𝐾𝑇)         (𝟏𝟒) 

𝐾𝑇 =
√6

𝜋
[0.5772 + 𝑙𝑛 {𝑙𝑛 (

𝑇

𝑇 − 1
)}] 

Where �̅� is the mean, 𝐶𝑣 is the coefficient of variation 

and 𝐾𝑇 is the frequency factor, which depends on return 
period (T) and probability distribution. 
 

3.1.5 Generalized Extreme Value 

A well-known three-parameter distribution for maxima is 
the GEV. In many European countries, such as Austria, 
Germany, Italy and Spain, the GEV distribution is 
recommended to provide the best-fit to flood data (Salinas 
et al., 2014). It includes a shape, κ, a scale, α and a location, 
ξ, and parameter. The parameters are estimated by L-
moment estimators. The pdf and cdf are expressed as: 

𝑓(𝑥) = 𝛼−1𝑒𝑥𝑝[−(1 − 𝑘)𝑦 − 𝑒𝑥𝑝(−𝑦)](𝟏𝟓) 

𝑦 = −𝑘−1 log {1 −
𝑘(𝑥 − 𝜉)

𝛼
} , 𝑘 ≠ 0 

𝑦 =
𝑥 − 𝜉

𝛼
, 𝑘 = 0 

𝐹(𝑥) = 𝑒𝑥𝑝[−𝑒𝑥𝑝 − 𝑦] 

𝑘 = 7.8590𝑐 + 2.955𝑐2 

Where, 

𝑐 =
2

3 + 𝜏3

−
log 2

log 3
 

𝛼 =
𝜆2𝑘

(1 − 2−𝑘)Γ(1 + 𝑘)
 

𝜉 = 𝜆1 − 𝛼{1 − Γ(1 + 𝑘)}/𝑘 

With a range 

−∞ < 𝑥 < 𝜉 +
𝛼

𝑘
; 𝑖𝑓𝑘𝜉 > 0; 

−∞ < 𝑥 < ∞; 𝑖𝑓𝑘 = 0 

𝜉 +
𝛼

𝑘
≤ 𝑥 < ∞; 𝑖𝑓𝑘 = 0 

Where 𝜏3 is the L-skewness of the distribution. 
 

3.2 Selection of candidate parameter estimation 
methods 

Having selected a priori probability distribution, the next 
step is to estimate the parameters required to fit the 
probability distribution to the selected data. A number of 
methods can be used for parameter estimation. In this study, 
the method of moments (MOM), the maximum likelihood 
estimates (MLE), and the L-moments are adopted since 
these are the most commonly adopted methods in previous 
studies. The L-moments method is considered in this study 
because it is less affected by extremes in the data series 
(Hosking, 1990) and can model a wide range of theoretical 
distributions. 
 

3.2.1 Selection of candidate goodness-of-fit tests 

The choice of a distribution is influenced by many 
factors, such as method of comparing the distributions, 
method of parameters estimation, and the availability of 
flood data. In this study, for evaluating the suitability of 
different probability distributions, following three goodness-
of-fit tests are adopted: Kolmogorov–Smirnov test (KS); 
Anderson – Darling test (AD); and Chi-Squared (x2) tests. 
The chosen distribution that best fits the maximum monthly 
flood amount is based on the minimum error indicated by 
all these three tests. 
 

3.2.2 Return Period 

One of the important objectives of frequency analysis is 
to calculate the recurrence interval or return period. If the 
variable (x) equal to or greater than an event of magnitude 
XT, occurs once in T years, then the probability of 
occurrence P (X ≥ x) in a given year of the variable is: 

𝑃(𝑥 ≥ 𝑥𝑇) =
1

𝑇
, 𝑇 =

1

1 − 𝑃(𝑥 ≤ 𝑥𝑇)
(𝟏𝟔) 

 

4. Results and Discussion 

The methodology presented above was applied to 24 
years observational data taken by the Department of 
Hydrology, of Ministry of Water Resources, Ethiopia. 

Based on the result of L moment diagram ratio drawn by 
skewness versus kurtosis and tests that provided lognormal 
distribution were selected among five distributions to 
estimate maximum or design flood of the Awetu River with 
respect to different return periods (Fig. 2). 

Besides this, a diagnostic test was performed to validate 
the probability distribution function selected to fit the 
empirical frequency distribution of a given sample data by 
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the D-index test. According to the D-index test, the 
minimum value written in Table 1 shows that lognormal 
distribution is the best and validate function to provide the 
frequency analysis of the Awetu River. Also, Goodness of fit 
tests has done to calculate a test–statistics, which are used to 
analyze how well the data fits the given distribution and 

describe the differences between the observed data values, 
and the expected values. The Anderson-Darling (AD), 
Kolmogorov-Smirnov (KS), and Chi-Squared (X2) tests 
were used for the goodness of fit tests in this report. To 
execute this goodness of fit tests, Easy Fit software was used. 
The values corresponding to each test are presented in Table 2.

 

 
 

Fig. 2. L moment diagram ratio for selected of L moment diagram ratio 

 

Tab. 1. D-index test result for selected probability distributions 

 

Distribution Name  Gumbel Log Pearson Type III  Log Normal Normal  

D-index value 5.08 3.422 3.31 3.33 

Remark 4 3 1 2 

 
 
Tab. 2. GOF value for selected probability distributions 

No. Distribution 
Kolmogorov-Smirnov Chi-Squared 

Statistic Rank Statistic Rank 

1 Gen. Extreme Value 0.18825 3 5.9979 4 

2 Gumbel 0.22437 4 4.1236 3 

3 Log-Pearson 3 0.15574 2 3.0938 2 

4 Lognormal 0.1419 1 1.9382 1 

5 Normal 0.26772 5 7.9245 5 
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After all, the tests performed confirmed that the 
lognormal distribution function is the best fit, and the 
magnitude of the maximum floods corresponding to return 
periods of 5, 10, 25, 50, 100 and 1000 years was estimated, 
as shown in Table 3. 
 

Conclusion  

The estimation for the best fitting distribution for 
monthly flood data amount has been the main interest in 

several studies. In this work, several forms of distributions 
have been tested in order to find the best fitting distribution.  

Different tests of goodness-of-fit have been attempted in 
several studies. In this study, the Log normal distribution 
function has been identified as the best fitting distribution 
for flood data in Awetu River, based on D-index value and 
goodness of fit (GOF) test. However, the flood data should 
be further analyzed and corrected for missing data, 
Historical data and Zero flood value. The study should be 
further extended to account for outliers existing in data.

 
Tab. 3. Discharge estimates using the best-fit distribution. 

Return period 
(Years) 

Ym  
(mean) (m3/s) 

SD (standard deviation) 
(m3/s) 

K (frequency 
factor) 

ZT 
(m3/s) 

 

XT 
(m3/s) 

 

5 1.002 0.37327 0.842 1.316293 20.7154 

10 1.002 0.37327 1.282 1.480532 30.23654 

25 1.002 0.37327 1.751 1.655596 45.24762 

50 1.002 0.37327 2.054 1.768697 58.7079 

100 1.002 0.37327 2.326 1.870226 74.16961 

1000 1.002 0.37327 3.09 2.155404 143.0225 

 
 
Based on this study, the Log normal distribution function 

should be considered the most suitable distribution for the 
analysis of monthly flood data of Awetu River. 

This study should lead to the preparation of a flood 
return map for various return periods with application in the 
field of flood forecasting management. In addition, peak 
discharge estimation plays a great role in the design of 
hydraulic structures, determination of reservoir capacity, 
increase of agricultural productivity, and watershed and 
ecosystem management. In urban areas, it is essential to 
reduce overflow of drainage structures, for creating a buffer 
zone to protect the human life and property from flooding 
damage. 
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Appendix 1. Monthly Awetu River Peak Discharge (m3/s) from 1992 to 2016. 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual Max Discharge 

1992 1.870 1.870 0.025 0.132 0.997 3.430 3.320 5.090 6.170 3.040 1.320 1.870 6.170 

1993 0.607 0.158 0.241 0.796 1.580 0.132 5.530 7.990 6.040 4.970 1.870 1.860 7.990 

1994 1.870 1.880 0.084 0.084 0.132 0.796 3.770 5.530 5.470 0.534 0.364 0.364 5.530 

1995 0.184 0.132 0.184 0.271 0.301 6.440 7.240 7.520 6.900 1.710 0.956 0.108 7.520 

1996 0.025 0.063 0.084 0.450 0.184 5.470 7.580 7.580 7.850 1.120 0.796 0.570 7.850 

1997 0.063 0.084 0.570 0.132 0.570 2.460 5.910 7.580 7.720 3.320 1.120 0.643 7.720 

1998 0.184 0.241 0.241 0.132 0.430 4.840 7.440 8.130 8.270 7.440 1.870 1.870 8.270 

1999 0.084 0.039 0.374 5.287 1.312 7.222 17.465 8.231 13.950 5.789 1.067 1.846 17.465 

2000 0.350 0.502 4.158 4.832 10.224 12.157 11.385 12.100 13.365 6.911 2.750 0.364 13.365 

2001 0.149 0.410 0.968 2.952 13.296 16.424 20.418 17.500 26.451 4.070 0.508 0.315 26.451 

2002 0.202 0.294 0.167 0.782 5.420 10.106 12.611 19.510 14.189 27.144 3.055 1.292 27.144 

2003 0.528 1.210 0.600 6.997 20.543 17.730 8.052 5.717 9.153 3.993 1.357 0.256 20.543 

2004 0.143 0.110 0.110 0.309 7.022 20.910 28.239 23.670 18.900 2.273 2.731 0.561 28.239 

2005 0.095 0.081 0.147 0.631 1.648 1.841 6.358 7.395 20.330 5.351 0.320 0.327 20.330 

2006 0.379 0.110 0.511 8.596 17.009 27.008 8.706 10.850 19.126 8.646 0.448 0.234 27.008 

2007 0.568 0.098 0.882 1.616 5.000 20.066 15.677 4.629 4.751 38.181 19.928 16.530 38.181 

2008 5.878 0.896 0.505 2.863 11.397 14.858 15.019 35.590 17.581 23.173 5.254 0.354 35.592 

2009 0.107 0.074 0.105 1.289 3.250 5.091 5.007 8.900 4.826 8.692 1.293 0.260 8.900 

2010 0.319 0.254 0.252 0.365 0.610 1.128 1.356 2.917 4.367 1.667 1.399 0.603 4.367 

2011 0.213 0.187 0.194 0.296 0.331 0.831 3.932 3.648 2.386 5.277 0.438 0.200 5.277 

2012 0.210 0.110 0.163 0.134 0.107 0.499 2.993 6.828 3.039 0.390 0.187 0.214 6.828 

2013 0.211 0.101 0.160 0.477 0.126 1.319 2.088 0.892 1.348 0.595 0.175 0.124 2.088 

2014 0.113 0.091 0.091 0.839 1.477 0.299 1.161 1.744 1.297 0.388 0.187 0.140 1.744 

2015 0.217 0.111 0.131 0.507 1.967 0.889 6.030 3.562 9.159 2.152 0.267 0.151 9.159 

2016 0.140 0.110 0.372 3.258 1.870 1.867 1.870 1.867 1.870 1.867 1.870 1.867 3.258 

 


