A survey on modular vector fields and CY modular forms

attached to Dwork family

Uma revisão de campos vetoriais modulares e formas modulares de CY decorrentes da família de Dwork

YOUNES NIKDELAN a, b

Abstract

This article aims to give a survey of the works of the author on modular vector fields and Calabi-Yau (CY) modular forms attached to the Dwork family and avoid technical details. For any positive integer n, it is introduced a moduli space $T := T_n$ of enhanced CY n-folds arising from the Dwork family. It is observed that there exists a unique vector field D in T, known as modular vector field, whose solution components can be expressed as q-expansions
(Fourier series) with integer coefficients. We call these q-expansions CY modular forms and it is verified that the space generated by them has a canonical $\mathfrak{sl}_2(\mathbb{C})$-module structure which provides it with a Rankin-Cohen algebraic structure. All these concepts are explicitly established for $n = 1, 2, 3, 4$.

Keywords: Modular vector field, Calabi-Yau modular form, Gauss-Manin connection in disguise.

MSC2010: 11F11, 32M25, 34M45, 14J32, 14J15, 14N35.

1 Introduction

Since introducing Calabi-Yau varieties, a vast number of works in mathematics and theoretical physics have been dedicated to the study of related differential equations. The solutions of these differential equations, or system of differential equations, provide us with innumerable infinite series or q-expansions (Fourier series) with integer coefficients which are generating functions of certain quantities. In lower dimensions $n = 1$ and $n = 2$ which are related to the elliptic curves and K3 surfaces, usually these q-expansions are (quasi-)modular forms, however, in higher dimensions we can not relate them with classical quasi-modular forms. Hossein Movasati by using an algebraic method in a geometric framework, calling *Gauss-Manin connection in disguise* (GMCD), introduced in a more systematic way a finite number of certain q-expansions arising from a family of CY varieties which conjecturally can generate all other q-expansions emerged from the same family. He called these finite number of q-expansions as *CY modular forms*. Indeed, CY modular forms are solution components of a unique canonical vector field, calling *modular vector field*, in a moduli space of the considered family of CY varieties enhanced with a certain basis of the middle de Rham cohomology space. To understand better the GMCD one can start reading the paper [5] which applies the method to the families of elliptic curves, and then continue with the paper [6] or the book [7]. The author in a joint work with Movasati [8] applied GMCD to a family of CY n-folds, $n \in \mathbb{N}$, arising from the Dwork family, and then pushed the studies forward in subsequent papers [9, 10, 11]. The present article gives a survey of [8, 9, 10, 11] and states explicitly the essential ingredients and objects in dimensions $n = 1, 2, 3, 4$.

The present article is prepared as follows. In Section 2 we first construct a moduli space arising from the Dwork family, and then establish and discuss the main results of [8, 9, 10] for any dimension n. We state explicitly the modular vector field, the associated $\mathfrak{sl}_2(\mathbb{C})$-module structure, solution components and some other related...
facts in dimensions $n = 1, 2, 3, 4$, respectively, in Section 3, Section 4, Section 5, Section 6.

\section{GMCD, $\mathfrak{sl}_2(\mathbb{C})$-module structure, CY modular forms and algebraic RC structure}

For any positive integer n, similarly to mirror quintic family, we construct a one-parameter family $X := X_z, z \in \mathbb{P}^1 \setminus \{0, 1, \infty\}$, of Calabi-Yau n-folds arising from the Dwork family:

$$W_z := \{zx_0^{n+2} + x_1^{n+2} + x_2^{n+2} + \cdots + x_{n+1}^{n+2} - (n + 2)x_0x_1x_2 \cdots x_{n+1} = 0\} \subset \mathbb{P}^{n+1},$$

and then obtain the moduli space $T := T_n$ of the enhanced pairs $(X, [\alpha_1, \alpha_2, \ldots, \alpha_{n+1}])$, where $\{\alpha_1, \alpha_2, \ldots, \alpha_{n+1}\}$ is a basis of the n-th algebraic de Rham cohomology $H^n_{dR}(X)$ satisfying some specific properties. Indeed, we find:

$$T = \text{Spec}(\mathbb{C}[t_1, t_2, \ldots, t_d, \frac{1}{t_{n+2}(t_{n+2} - t_1^{n+2})}],)$$

$$\mathcal{O}_T = \mathbb{C}[t_1, t_2, \ldots, t_d, \frac{1}{t_{n+2}(t_{n+2} - t_1^{n+2})}],$$

in which \tilde{t} is the product of $\left\lceil \frac{n+1}{2} \right\rceil$ number of t_j’s and

$$d := d_n = \dim T = \begin{cases} \frac{(n+1)(n+3)}{4} + 1, & \text{if } n \text{ is odd;} \\ \frac{n(n+2)}{4} + 1, & \text{if } n \text{ is even.} \end{cases}$$

Moreover, $\Delta = t_{n+2}(t_{n+2} - t_1^{n+2})$ is the discriminant of the modified Dwork family under the transformation $z = \frac{t_{n+2}}{t_1^{n+2}}$. We observe that (see [8, Theorem 1.1]) there exist a unique vector field $D := D_n$ and unique regular functions $Y_j \in \mathcal{O}_T$, $j = 1, 2, \ldots, n - 2$ in T such that the Gauss-Manin connection of the universal family of T composed with the vector field D, namely ∇_D, satisfies (no worries if you do not
We conjecture that component solutions of D can be expressed as q-expansions with integer coefficients (this is verified for $n = 1, 2, 3, 4$, which are stated in the next sections). For all n, we can find vector fields $W := W_n$ and $δ := δ_n$ in T which along with D form a copy of $\mathfrak{sl}_2(\mathbb{C})$ (see [9, Theorem 1.4]), i.e.:

$$\left\{\begin{array}{l}
[D, δ] = W, \quad [W, D] = 2D, \quad [W, δ] = -2δ, \\
\end{array}\right.$$ \hspace{1cm} (2.4)

where $[\cdot, \cdot]$ refers to the Lie bracket of vector fields. Note that the vector fields $D, W, δ$ in [8, 9, 10, 11] were denoted by R, H, F, respectively. Indeed, we observe that W and $δ$ are in the following forms:

$$W = \sum_{j=1}^{d} w_j t_j \frac{\partial}{\partial t_j}, \text{ for some } w_j \in \mathbb{Z}_{\geq 0},$$ \hspace{1cm} (2.5)

$$δ = \frac{∂}{∂t_2}, \text{ if } n \neq 2 \quad (δ = 2 \frac{∂}{∂t_2}, \text{ if } n = 2).$$ \hspace{1cm} (2.6)

We should mention that for all odd $n \geq 3$, as we will see in Section 5, we will need to use a simple transformation to get $δ$ as above and substitute t_d by \tilde{t}_d, which, by abuse of notation, will be denoted again by t_d.

If alternately, by abuse of notation, we suppose that t_j’s are solution components of D, then we can consider $D, W, δ$ as differential operators on the \mathbb{C}-algebra generated by t_j’s:

$$\mathcal{M} := \mathbb{C} \left[t_1, t_2, t_3, \ldots, t_d, \frac{1}{t_{n+2}(t_{n+2} - t_1^{n+2})}\right],$$

which is called the space of CY modular forms. By setting $\deg t_j := w_j$, we provide...
the \(\mathcal{M} \) with an algebraic graded structure, i.e.:

\[
\mathcal{M} = \bigoplus_{k \in \mathbb{Z}} \mathcal{M}_k,
\]

in which \(\mathcal{M}_k := \{ f \in \mathcal{M} \mid \deg f = k \} \), for all \(k \in \mathbb{Z} \), is the space of CY modular forms of weight \(k \). In particular, for all \(n \in \mathbb{N} \), we observe that \(w_1 = 1, w_2 = 2, w_{n+2} = n + 2 \). Using the assigned degrees (weights) it turns out that \(D \) is a quasi-homogeneous vector field of degree 2 in \(\mathcal{T} \), and consequently it is a degree 2 differential operator on \(\mathcal{M} \), i.e., for all \(f \in \mathcal{M}_k \), we get \(Df \in \mathcal{M}_{k+2} \). Analogously, we observe that \(\mathcal{W}f = kf \), which is the operator multiplication by weight and \(\delta f \in \mathcal{M}_{k-2} \) decreases the weight by 2.

By comparing the \(\mathfrak{sl}_2(\mathbb{C}) \)-module structure of the space of full quasi-modular forms with the \(\mathfrak{sl}_2(\mathbb{C}) \)-module structure of the space of CY modular forms \(\mathcal{M} \), it turns out that \(t_2 \) plays the role of the quasi-modular form \(E_2 \) (which is the weight 2 Eisenstein series). In this way, we introduce the space of 2CY modular forms \(\mathcal{M}^2 \) as follows:

\[
\mathcal{M}^2 := \mathbb{C} \left[t_1, t_3, \ldots, t_d, \frac{1}{t_{n+2}(t_{n+2} - t_1^{n+2})} \right] = \bigoplus_{k \in \mathbb{Z}} \mathcal{M}^2_k.
\]

Indeed, we have \(\mathcal{M} = \mathcal{M}^2[t_2] \). In a conceptual comparison, the space of 2CY modular forms \(\mathcal{M}^2 \) is equivalent to the space of full modular forms \(\mathcal{M}(\text{SL}_2(\mathbb{Z})) = \mathbb{C}[E_4, E_6] \), and the space of CY modular forms \(\mathcal{M} = \mathcal{M}^2[t_2] \) is equivalent to the space of full quasi-modular forms \(\widetilde{\mathcal{M}}(\text{SL}_2(\mathbb{Z})) = \mathcal{M}(\text{SL}_2(\mathbb{Z}))[E_2] = \mathbb{C}[E_2, E_4, E_6] \).

The reason for choosing the name ”2CY modular forms” is because of the order of appearance of this space in the literature. In fact the space of 1CY modular forms is \(\mathcal{M}^1 := \mathbb{C} \left[t_1, t_{n+2}, \frac{1}{t_{n+2}(t_{n+2} - t_1^{n+2})} \right] \) which has been studied by Movasati [7].

Let \(f \in \mathcal{M}^2_k \) be a 2CY modular form of weight \(k \) for some \(k \in \mathbb{Z} \). It is obvious that \(Df \in \mathcal{M}_{k+2} \), however it is not necessarily a 2CY modular form. Analogous to the Ramanujan-Serre derivation for full modular forms, we define the degree 2 Ramanujan-Serre-type derivation \(\partial : \mathcal{M}^2_* \to \mathcal{M}^2_{*-2} \) as follows:

\[
\partial f = Df + kt_2 f, \quad \text{if } n \neq 2, \quad (2.7)
\]
\[
\partial f = Df + \frac{k}{2} t_2 f, \quad \text{if } n = 2. \quad (2.8)
\]

Since \(D \) is a degree 2 derivation on \(\mathcal{M} \), due to Zagier [12], we can provide \(\mathcal{M} \) with a standard Rankin-Cohen (RC) structure by defining the \(m \)-th RC bracket for
CY modular forms as follows:

\[[f, g]_{D,m} := \sum_{i+j=m} (-1)^i \binom{m+k-1}{i} \binom{m+l-1}{j} D^i f D^j g, \ \forall f \in \mathcal{M}_k, \ \forall g \in \mathcal{M}_l, \]

(2.9)

where \(m \in \mathbb{Z}_{\geq 0}, \ k, l \in \mathbb{Z} \) and \(D^i f, D^j g \) are respectively the \(j \)-th and \(i \)-th derivative of \(f \) and \(g \) with respect to the derivation \(D \). It is evident that \([f, g]_{D,m} \in \mathcal{M}_{k+l+2m}\). Cohen proved that the RC bracket of modular forms is again a modular form. Similarly, we can observe that RC bracket of 2CY modular forms is again a 2CY modular form, i.e.,

\[\forall f \in \mathcal{M}^2_k, \ \forall g \in \mathcal{M}^2_l \implies [f, g]_{D,m} \in \mathcal{M}^2_{k+l+2m}. \]

(2.10)

To prove this, we first let:

\[\Lambda := \begin{cases}
-\frac{1}{2} D t_2 - \frac{1}{4} t_2^2, & \text{if } n = 2, \\
- D t_2 - t_2^2, & \text{if } n \neq 2,
\end{cases} \]

(2.11)

and observe that \(\Lambda \in \mathcal{M}^2_4 \). For any \(m \in \mathbb{Z}_{\geq 0} \) we define the brackets \([\cdot, \cdot]_{\partial, \Lambda, m} : \mathcal{M}^2_k \times \mathcal{M}^2_l \rightarrow \mathcal{M}^2_{k+l+2m}\):

\[[f, g]_{\partial, \Lambda, m} = \sum_{i+j=m} (-1)^i \binom{m+k-1}{i} \binom{m+l-1}{j} f^{(i)} g^{(j)}, \]

(2.12)

where \(f \in \mathcal{M}^2_k, \ g \in \mathcal{M}^2_l \), and \(f^{(j)} \in \mathcal{M}^2_{k+2j}, \ g^{(i)} \in \mathcal{M}^2_{l+2i} \) are defined recursively as follows

\[f^{(j+1)} = \partial f^{(j)} + j(j + k - 1) \Lambda f^{(j-1)}, \ g^{(i+1)} = \partial g^{(i)} + i(i + l - 1) \Lambda g^{(i-1)}, \]

(2.13)

with initial conditions \(f^{(0)} = f, \ g^{(0)} = g, \ f^{(1)} = \partial f, \ g^{(0)} = \partial g \). Then we obtain:

\[[f, g]_{D,m} = [f, g]_{\partial, \Lambda, m}, \]

which shows \([f, g]_{D,m} \in \mathcal{M}^2_{k+l+2m}\). By this we provide \((\mathcal{M}^2, [f, g]_{D,m})\) with a canonical RC algebra structure, in the sense Zagier [12].

In the subsequent sections we state \(D, W, \delta \) and component solutions of \(D \) for \(n = 1, 2, 3, 4 \). In what follows \(E_{2j}, \ j = 1, 2, 3 \), are Eisenstein series defined as

\[E_{2j}(q) = 1 + b_j \sum_{k=1}^{\infty} \sigma_{2j-1}(k) q^k \]

with \((b_1, b_2, b_3) = (-24, 240, -504)\) and \(\sigma_j(k) = \sum_{d|k} d^j \) and \(\eta(q) = q^{1/24} \prod_{k=1}^{\infty} (1 - q^k) \) is the Dedekind eta function. We also consider...
\[q = e^{2\pi i \tau} \text{ where } \tau \in \mathbb{C} \text{ with } \text{Im } \tau > 0. \]

\section{The case \(n = 1 \)}

In this case we find:

\[
\begin{align*}
D &= (-9(t_1^3 - t_3) - t_2t_1) \frac{\partial}{\partial t_1} + (81t_1(t_1^3 - t_3) - t_2^2) \frac{\partial}{\partial t_2} + (-3t_2t_3) \frac{\partial}{\partial t_3}, \\
W &= t_1 \frac{\partial}{\partial t_1} + 2t_2 \frac{\partial}{\partial t_2} + 3t_3 \frac{\partial}{\partial t_3}, \\
\delta &= \frac{\partial}{\partial t_2}.
\end{align*}
\]

(3.1)

(3.2)

(3.3)

In particular, vector field (3.2) implies \(\text{deg}(t_1) = 1, \text{deg}(t_2) = 2 \) and \(\text{deg}(t_3) = 3 \).

We find a solution of \(D \) in terms of quasi-modular forms in \(\tilde{M}(\Gamma_0(3), \chi_{-3}) \) (actually, \(t_1 \) and \(t_3 \) are modular forms and \(t_2 \) is a quasi-modular form, see [11, §3]). Indeed, by using the transformations \(P_3 = -2t_2 - 9t_1^2, Q_3 = 9t_1^2, R_3 = 3t_1t_3 \) and \(S_3 = t_2^2 \), we find the following Ramanujan-type system for \(\Gamma_0(3) \):

\[
\begin{align*}
P_3' &= \frac{1}{2}(P_3^2 - Q_3^2) \\
Q_3' &= \frac{1}{2}(P_3Q_3 + \Omega_3^2 + 54R_3) \\
R_3' &= \frac{2}{7}P_3R_3 + \frac{1}{7}Q_3R_3 + 9S_3, \\
S_3 &= P_3S_3 + \Omega_3S_3
\end{align*}
\]

(3.4)

in which the relation \(R_3^2 - \Omega_3S_3 = 0 \) holds. A particular solution of this system is given as follows (see [11, Theorem 1.2]):

\[
\begin{align*}
P_3(q) &= \frac{1}{2}(E_2(q) + 3E_2(q^3)), \\
Q_3(q) &= \frac{1}{2}(3E_2(q^3) - E_2(q)), \\
R_3(q) &= \eta^8(q^3) + 9\frac{\eta^8(q^3)\eta(q^3)}{\eta(q)}, \\
S_3(q) &= \left(\frac{\eta^8(q^3)}{\eta(q^3)}\right)^2,
\end{align*}
\]

(3.5)

where \(\Omega_3 \in \mathcal{M}_2(\Gamma_0(3)), R_3 \in \mathcal{M}_4(\Gamma_0(3)), S_3 \in \mathcal{M}_6(\Gamma_0(3)) \) and \(P_3 \in \tilde{\mathcal{M}}_2(\Gamma_0(3)) \).

Moreover, if we consider

\[
\Delta_3 := \eta^6(q)\eta^6(q^3),
\]

which is a cusp form of weight 6 for \(\Gamma_0(3) \), then \(\Delta_3 = \Omega_3R_3 - 27S_3 \) and it is a factor of the discriminant of the Dwork family (which can be called modular discriminant for \(\Gamma_0(3) \)) satisfying:

\[
\Delta_3' = P_3\Delta_3.
\]
If we consider Q_3, R_3, S_3 as free parameters and let $I := \langle R_3^2 - Q_3S_3 \rangle$ to be the ideal generated by $R_3^2 - Q_3S_3$ in $\mathbb{C}[Q_3, R_3, S_3]$, then:

$$M(\Gamma_0(3)) \simeq \frac{\mathbb{C}[Q_3, R_3, S_3]}{I},$$

$$\tilde{M}(\Gamma_0(3)) \simeq \frac{\mathbb{C}[P_3, Q_3, R_3, S_3]}{I}.\quad (3.6)$$

4 The case $n = 2$

In this case we find:

$$D = (t_3 - t_2t_1) \frac{\partial}{\partial t_1} + (2t_1^2 - \frac{1}{2}t_2^2) \frac{\partial}{\partial t_2} + (8t_1^3 - 2t_2t_3) \frac{\partial}{\partial t_3} + (-4t_2t_4) \frac{\partial}{\partial t_4},\quad (4.1)$$

$$W = 2t_1 \frac{\partial}{\partial t_1} + 2t_2 \frac{\partial}{\partial t_2} + 4t_3 \frac{\partial}{\partial t_3} + 8t_4 \frac{\partial}{\partial t_4},\quad (4.2)$$

$$\delta = 2 \frac{\partial}{\partial t_2},\quad (4.3)$$

where the polynomial equation $t_3^2 = 4(t_1^2 - t_4)$ holds among t_i’s. From (4.2) we get $\deg(t_1) = 2$, $\deg(t_2) = 2$, $\deg(t_3) = 4$ and $\deg(t_4) = 8$. We get a solution of D in terms of quasi-modular forms in $\tilde{M}(\Gamma_0(2))$ (actually, t_1 and t_3 are modular forms and t_2 is a quasi-modular form). Indeed, by using the transformations $P_2 = 20t_2$, $Q_2 = 40t_1$ and $R_2 = 800t_3$, we find the following Ramanujan-type system for $\Gamma_0(2)$:

$$\begin{cases}
P_2' = \frac{1}{8}(P_2^2 - Q_2^2) \\
Q_2' = \frac{1}{4}(P_2Q_2 - R_2) \\
R_2' = \frac{1}{2}(P_2R_2 - Q_2^2)
\end{cases}\quad (4.4)$$

whose a particular solution is given as follows (see [11, Theorem 1.1]):

$$\begin{cases}
P_2(q) = \frac{1}{2}(E_2(q) + 2E_2(q^2)), \\
Q_2(q) = 2E_2(q^2) - E_2(q), \\
R_2(q) = \frac{1}{3}(4E_4(q^2) - E_4(q))
\end{cases}\quad (4.5)$$

in which $Q_2 \in M_2(\Gamma_0(2))$, $R_2 \in M_4(\Gamma_0(2))$ and $P_2 \in \tilde{M}_2(\Gamma_0(2))$. Moreover, if we consider

$$\Delta_2 := \eta^8(q)\eta^8(q^2),$$

which is a cusp form of weight 8 for $\Gamma_0(2)$, then $\Delta_2 = \frac{1}{200}(Q_2^4 - R_2^2)$ and it is a factor of the discriminant of the Dwork family (which can be called modular discriminant
for $\Gamma_0(2))$ satisfying:

$$\Delta_2' = \mathcal{P}_2 \Delta_2.$$

We also have:

$$\mathcal{M}(\Gamma_0(2)) = \mathbb{C}[\mathcal{Q}_2, \mathcal{R}_2]$$

(4.6)

$$\tilde{\mathcal{M}}(\Gamma_0(2)) = \mathbb{C}[\mathcal{P}_2, \mathcal{Q}_2, \mathcal{R}_2]$$

(4.7)

5 The case $n = 3$

In this case we obtain:

$$D = \left(t_3 - t_2 t_1 \right) \frac{\partial}{\partial t_1} + \left(\frac{t_3^3 t_4}{5^4 (t_1^3 - t_5)} - t_2^2 \right) \frac{\partial}{\partial t_2}$$

(5.1)

$$+ \left(\frac{t_3^3 t_6}{5^4 (t_1^3 - t_5)} - 3 t_2 t_3 \right) \frac{\partial}{\partial t_3} + \left(- t_7 - t_2 t_4 \right) \frac{\partial}{\partial t_4}$$

$$+ \left(- 5 t_2 t_5 \right) \frac{\partial}{\partial t_5} + \left(5^5 t_1^4 - 2 t_3 t_4 - t_2 t_6 \right) \frac{\partial}{\partial t_6} + \left(- 5^4 t_1 t_3 - t_2 t_7 \right) \frac{\partial}{\partial t_7},$$

(5.2)

$$W = t_1 \frac{\partial}{\partial t_1} + 2 t_2 \frac{\partial}{\partial t_2} + 3 t_3 \frac{\partial}{\partial t_3} + 5 t_5 \frac{\partial}{\partial t_5} + t_6 \frac{\partial}{\partial t_6} + 2 t_7 \frac{\partial}{\partial t_7}.$$

(5.3)

Hence $\text{deg}(t_1) = 1$, $\text{deg}(t_2) = 2$, $\text{deg}(t_3) = 3$, $\text{deg}(t_4) = 0$, $\text{deg}(t_5) = 5$, $\text{deg}(t_6) = 1$, $\text{deg}(t_7) = 2$. We can find the q-expansion of a solution of D, whose first 7 coefficients are given in Table 1.

<table>
<thead>
<tr>
<th>q</th>
<th>q^1</th>
<th>q^2</th>
<th>q^3</th>
<th>q^4</th>
<th>q^5</th>
<th>q^6</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>1</td>
<td>175</td>
<td>117625</td>
<td>111784375</td>
<td>126958105626</td>
<td>160715581780591</td>
</tr>
<tr>
<td>t_2</td>
<td>$\frac{1}{2}$</td>
<td>17</td>
<td>11185</td>
<td>12264325</td>
<td>16166719625</td>
<td>23478405649152</td>
</tr>
<tr>
<td>t_3</td>
<td>$-\frac{1}{3}$</td>
<td>13</td>
<td>6425</td>
<td>6744325</td>
<td>8719553625</td>
<td>12525150549888</td>
</tr>
<tr>
<td>t_4</td>
<td>$\frac{1}{4}$</td>
<td>13</td>
<td>2660</td>
<td>1855375</td>
<td>175073750</td>
<td>198133568498</td>
</tr>
<tr>
<td>t_5</td>
<td>0</td>
<td>4</td>
<td>41475</td>
<td>32183000</td>
<td>3267311250</td>
<td>384103488554</td>
</tr>
<tr>
<td>t_6</td>
<td>$\frac{1}{5}$</td>
<td>187</td>
<td>28760</td>
<td>16677425</td>
<td>15028305250</td>
<td>163722727224012</td>
</tr>
<tr>
<td>t_7</td>
<td>$-\frac{1}{6}$</td>
<td>3</td>
<td>90</td>
<td>566375</td>
<td>52676000</td>
<td>74501292951258</td>
</tr>
</tbody>
</table>

Table 1: Coefficients of q^k, $0 \leq k \leq 6$, in the q-expansion of a solution of $D = D_3$.

Using this solution we obtain:

$$Y_1 = \frac{t_3^3}{5^4 (t_1^3 - t_5)} = 5 + 2875 \frac{q}{1 - q} + 609250 \times 2^3 \frac{q^2}{1 - q^2} + \ldots$$

which is the Yukawa coupling given in [1].

As we can see, in this case δ is different from the form claimed in (2.6) (this
happens in all odd cases \(\geq 3 \)). We can solve this problem using the transformation:

\[
\tilde{t}_7 := t_7 + t_2 t_4.
\]

from which we obtain:

\[
\begin{align*}
D(\tilde{t}_7) &= -5^4 t_1 t_3 + \frac{t_3^2 t_4}{5^4(t_1^6 - t_5^6)} - 2t_2 \tilde{t}_7, \\
W(\tilde{t}_7) &= 2\tilde{t}_7, \\
\delta(\tilde{t}_7) &= 0.
\end{align*}
\]

Hence we get the vector fields \(D, W \) and \(\delta \) in the chart \((t_1, t_2, \ldots, t_6, \tilde{t}_7) \) as follows:

\[
\begin{align*}
D &= \left(t_3 - t_2 t_1 \right) \frac{\partial}{\partial t_1} + \left(\frac{t_3^2 t_4}{5^4(t_1^6 - t_5^6)} - t_2^2 \right) \frac{\partial}{\partial t_2} + \left(\frac{t_3^2 t_6}{5^4(t_1^6 - t_5^6)} - 3t_2 t_3 \right) \frac{\partial}{\partial t_3} - \tilde{t}_7 \frac{\partial}{\partial t_4} - 5t_2 t_5 \frac{\partial}{\partial t_5} + \left(5^5 t_1^3 - 2t_3 t_4 - t_2 t_6 \right) \frac{\partial}{\partial t_6} + \left(-5^4 t_1 t_3 + \frac{t_3^2 t_4^2}{5^4(t_1^6 - t_5^6)} - 2t_2 \tilde{t}_7 \right) \frac{\partial}{\partial \tilde{t}_7}, \\
W &= t_1 \frac{\partial}{\partial t_1} + 2t_2 \frac{\partial}{\partial t_2} + 3t_3 \frac{\partial}{\partial t_3} + 5t_5 \frac{\partial}{\partial t_5} + t_6 \frac{\partial}{\partial t_6} + 2\tilde{t}_7 \frac{\partial}{\partial \tilde{t}_7}, \\
\delta &= \frac{\partial}{\partial t_2}.
\end{align*}
\]

Indeed, here \(t_7 \notin \mathcal{M}^2 \), hence the space of 2CY modular forms is the following:

\[
\mathcal{M}^2 = \mathbb{C} \left[t_1, t_3, t_4, t_5, t_6, \tilde{t}_7, \frac{1}{t_5(t_5 - t_1)} \right].
\]

This transformation is new and it does not appear in previous works.

Note that in [10] to solve the above problem we considered:

\[
\hat{D} := D - t_2 \left([D, \frac{\partial}{\partial t_2}] - W \right) = D + t_2 t_4 \frac{\partial}{\partial t_4} - t_2 t_7 \frac{\partial}{\partial \tilde{t}_7},
\]
then we get:

\[\tilde{D} = \left(t_3 - t_1 t_2 \right) \frac{\partial}{\partial t_1} + \left(\frac{t_3^2 t_4}{5^4 (t_1^6 - t_5)} - t_2^2 \right) \frac{\partial}{\partial t_2} \]

\[+ \left(\frac{t_3^2 t_6}{5^4 (t_1^6 - t_5)} - 3 t_2 t_3 \right) \frac{\partial}{\partial t_3} + \left(- t_7 \right) \frac{\partial}{\partial t_4} \]

\[+ \left(- 5 t_2 t_5 \right) \frac{\partial}{\partial t_5} + \left(5^3 t_1^3 - 2 t_3 t_4 - t_2 t_6 \right) \frac{\partial}{\partial t_6} + \left(- 5^4 t_1 t_3 - 2 t_2 t_7 \right) \frac{\partial}{\partial t_7}, \]

\[\tilde{W} = W = t_1 \frac{\partial}{\partial t_1} + 2 t_2 \frac{\partial}{\partial t_2} + 3 t_3 \frac{\partial}{\partial t_3} + 5 t_5 \frac{\partial}{\partial t_5} + t_6 \frac{\partial}{\partial t_6} + 2 t_7 \frac{\partial}{\partial t_7}, \]

\[\delta = \frac{\partial}{\partial t_2}, \]

which again form a copy of \(\mathfrak{sl}_2(\mathbb{C}) \). But we still could not find the \(q \)-expansion of a solution of \(\tilde{D} \), which is not interesting. The Gauss-Manin connection matrix of \(\tilde{D} \) is as follows:

\[
\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & Y_1 & 0 \\
t_2 t_4 & 0 & 0 & -1 \\
-t_2 (t_2 t_4 + t_7) & t_2 t_4 & 0 & 0
\end{pmatrix}
\]

(5.10)

6 The case \(n = 4 \)

In this case we get:

\[D = \left(t_3 - t_2 t_1 \right) \frac{\partial}{\partial t_1} + \left(\frac{6^{-2} t_3^2 t_4 t_8}{t_1^6 - t_6} - t_2^2 \right) \frac{\partial}{\partial t_2} \]

\[+ \left(\frac{6^{-2} t_3^2 t_8}{t_1^6 - t_6} - 3 t_2 t_3 \right) \frac{\partial}{\partial t_3} + \left(\frac{6^{-2} t_3^2 t_1^6}{t_1^6 - t_6} - t_2 t_4 \right) \frac{\partial}{\partial t_4} \]

\[+ \left(\frac{6^{-2} t_3^2 t_5 t_8 + 5 t_4^4 t_3 t_5}{2 (t_1^6 - t_6)} - t_3 t_4 - 2 t_2 t_5 \right) \frac{\partial}{\partial t_5} \]

\[+ \left(- 6 t_2 t_6 \right) \frac{\partial}{\partial t_6} \]

\[+ \left(\frac{6^{-2} t_4^2 - t_2^2}{2 \times 6^{-2}} \right) \frac{\partial}{\partial t_7} + \left(\frac{3 t_5^4 t_3 t_5 - 3 t_2 t_8}{t_1^6 - t_6} \right) \frac{\partial}{\partial t_8} \] ,

\[W = t_1 \frac{\partial}{\partial t_1} + 2 t_2 \frac{\partial}{\partial t_2} + 3 t_3 \frac{\partial}{\partial t_3} + t_4 \frac{\partial}{\partial t_4} + 2 t_5 \frac{\partial}{\partial t_5} + 6 t_6 \frac{\partial}{\partial t_6} + 3 t_8 \frac{\partial}{\partial t_8}, \]

(6.2)

\[\delta = \frac{\partial}{\partial t_2}, \]

(6.3)

where the equation \(t_2^2 = 36 (t_1^6 - t_6) \) holds among \(t_i \)’s. Analogous to the previous cases we have \(\text{deg}(t_1) = 1, \ \text{deg}(t_2) = 2, \ \text{deg}(t_3) = 3, \ \text{deg}(t_4) = 1, \ \text{deg}(t_5) = 2, \ \text{deg}(t_6) = 6, \ \text{deg}(t_7) = 0, \ \text{deg}(t_8) = 3 \). In this case also we can find the \(q \)-expansion of a solution components of \(D \) and their first 7 coefficients are given in Table 2. If we
compute the q-expansion of Y_1^2, then we find

$$\frac{1}{6} Y_1^2 = \frac{1}{6} (-Y_2)^2 = \frac{1}{6^4} t_6^2 - t_6$$

$$= 6 + 120960 q + 4136832000 q^2 + 148146924602880 q^3 + 542021984981154320 q^4 + 20062393453713719778560 q^5 + \ldots$$

which is the 4-point function discussed in [3, Table 1, $d = 4$]. We have also computed the q-expansion of the modular coordinate z

$$\frac{z}{6^6} = \frac{t_6}{(6 t_1)^6} = q - 6264 q^2 - 8627796 q^3 - 237290958144 q^4 + 4523787606611250 q^5 + \ldots$$

which coincides with the one computed in [4, §6.1].

\[6^6 \quad t_1 \quad t_2 \quad t_3 \quad t_4 \quad t_5 \quad t_6 \quad t_7 \quad t_8 \]

\[1 \quad 4143 \quad 51744044 \quad 918902851011 \quad 19562018469120126 \quad 4655697243977517857888 \]

\[9 \quad 11073 \quad 224827748 \quad 55181044614231 \quad 14988755998208054 \quad 34377802214995612286652 \]

\[11 \quad 15317 \quad 2260575892 \quad 54420579152449 \quad 14770522190487154386 \quad 42523861224488896739628 \]

\[16 \quad 193131 \quad 994144832 \quad 95619995713765 \quad 259141665185049348 \quad 7501827757146689038669 \]

\[45 \quad 66972 \quad 921545916 \quad 222828516313454 \quad 5992469557830644438 \quad 172421754885815816992 \]

\[0 \quad -1 \quad 1944 \quad 1006356 \quad 13957401664 \quad 261561526319250 \quad 5745386481142558112 \]

\[7 \quad 12059 \quad 41140692 \quad 7335491627335 \quad 1578112018372458 \quad 378112847294112626940 \]

\[46 \quad 6485 \quad 103470648 \quad 24464181658391 \quad 65590268468827058 \quad 186875794102314534628 \]

Table 2: Coefficients of q^k, $0 \leq k \leq 6$, in the q-expansion of a solution of $D = D_4$.

Acknowledgments

During a conversation with Don Zagier, he suggested to write a text without technical and computational details. So, the author would like to thank him for giving the idea of writing the present survey, which has been prepared during his stay at Max Planck Institute for Mathematics (MPIM) in Bonn. The author also expresses his gratitude to MPIM and its staff for preparing such an excellent ambience for doing mathematical work.

References

[11] Nikdelan, Y.: Ramanujan-type systems of nonlinear ODEs for $\Gamma_0(2)$ and $\Gamma_0(3)$, arXiv:2111.01844 [math.NT], 2021.