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A NOTE ON THE CONVERGENCE OF ITERATED INFINITE

EXPONENTIALS OF REAL NUMBERS

SOBRE A CONVERGÊNCIA DE EXPONENCIAIS INFINITAS DE NÚMEROS REAIS

ANDRÉ LUIZ CORDEIRO DOS SANTOSa

ALEXANDRE DE SOUZA SOARESb PATRÍCIA NUNES DA SILVAc

Resumo

Nesta nota, discutimos um erro capcioso na solução de um problema que envolve
exponenciação infinita. Analisamos quando uma sequência infinita de exponenciais
iteradas de um número real converge. A questão é motivada pelo fato de que a ex-
ponenciação infinita geralmente aparece no contexto em que problemas desafiadores
são apresentados a estudantes de Matemática sem muita preocupação com a conver-
gência. Para alcançar uma compreensão mais profunda deste tema, discutimos um
teorema provado originalmente por Knoebel [1] porém com diferentes enfoques e
métodos. Diferentemente da prova de Knoebel, a presente nota utiliza apenas fun-
ções de uma variável.
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Abstract

In this note, we deal with a tricky mistake on solving a problem involving infinite
exponentiation. We analyze the question of when an infinite sequence of iterated ex-
ponentials of a real number converges. Our motivation is that infinite exponentiation
often appears in the context of ‘challenge’ problems presented to students of Mathe-
matics without much regard for convergence. Looking for a deeper understanding of
it, a theorem proved initially by Knoebel in [1] is established, however, with different
focus and methods. In contrast to Knoebel’s proof, the present note makes use only
of one-variable functions.
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1. Introduction

Commonly, the equation

xx
x·
··

= 2 (1)

is presented as a challenge for students and enthusiasts of Mathematics. Forgoing formal-
ity, an argument often used to address the problem is to rewrite (1) as

pq = 2,

where p = x and q = xx
x·
··

. This is simply p2 = 2, seeing as q = 2 due to (1). Thus we
have x =

√
2. This gives rise to the beautiful (albeit not rigorous) identity

√
2
√
2
√
2
··
·

= 2 (2)

Still disregarding the precise meaning of equation (1) and of identity (2), it is possible to
repeat the argument in order to solve the general case

xx
x·
··

= L, (3)

in which L is a positive real number. Analogously, it follows that x = L1/L is the solution
of (3). A brief consideration of this general solution shows that if L = 4, then again
x =
√
2 is the solution of equation (3), from whence it follows that

√
2
√
2
√
2
··
·

= 4. (4)

This shows that there is something not quite right, considering that identities (2) and (4)
contradict each other. This should raise an alarm, especially to beginners in Mathematics,
that a careful analysis of the previous argument is desired, or, which amounts to the same,
that one cannot afford to neglect mathematical rigor. This should not, nevertheless, dis-
courage the pursuit of intuitive ideas, seeing that as much as the above manipulation may
be informal, it is responsible for revealing the existence of a problem that begs further
analysis.

Problems that involve iterated infinite exponentiation (also called infinite tetration)
similar to the one presented in equation (1) are not new. A rich and detailed reference is
[1], which presents interesting historical accounts on the evolution of the subject besides
the treatment of this problem. Our approach to the problem is based on the analysis of
certain one-variable functions and the properties of real sequences. This is a remarkable
distinction that sets the present note apart from the aforementioned [1], which makes
substantial use of analysis of functions on several variables.

The central motivation for this note is to characterize the values of L > 0 for
which the equation (3) has a solution. In this direction, the first step is to give a precise
definition of what it means for an x to be a solution of (3). We do this in Section 2, where
we also state our main theorem. In Section 3, we pursue the steps necessary to establish
the main theorem.
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2. Formalization of the problem

For each x > 0, consider the sequence {an(x)}n∈N recursively defined by

an(x) =

{
x, (n = 1)

xan−1(x), (n ≥ 2)
(5)

We shall let the notation xxx
··
·

represent the limit of the sequence {an(x)}n∈N when it
exists; thus, x > 0 will be a solution of equation (3) when the sequence {an(x)}n∈N
converges to L.

Our main theorem is the following.

Theorem 2.1. The equation

xx
x·
··

= L

has a solution (in the sense defined above) if and only if e−1 ≤ L ≤ e. In this case,
x = L1/L.

The latter claim of the theorem is straightforward to prove.

Proposition 2.2. If xx
x·
··

= L has a solution x, then x = L1/L.

Proof. Assume that the sequence {an(x)}n∈N converges to a limit L, then take the limit
on both sides of the recurrence relation (5); since exponentiation is continuous, the right-
hand side becomes xL, and solving for x yields the claim.

To establish the existence part of Theorem 2.1, one needs to investigate among the
values of x which ones generate a convergent sequence, and what is the corresponding
limit. We shall carry out this investigation for different values of x in what follows, and
then summarize our findings to complete the theorem.

3. Analysis of the sequence {an(x)}n∈N.

We already established in Proposition 2.2 that in case the sequence {an(x)}n∈N
converges to L, then x = L1/L, which is regarded as the solution of (3). The structure of
this solution motivates the following lemma.

Lemma 3.1. The function ϕ(y) = y1/y (y > 0) possesses a global maximum at y = e.
Moreover, the restriction of this function to the interval (0, e] is one-to-one and onto the
interval (0, e1/e].

Proof. The global maximum follows immediately from the analysis of the signal of the
derivative of the function ϕ:

ϕ′(y) = (ϕ(y)/y2)(1− ln y).

The signal analysis reveals that ϕ is strictly increasing on the interval (0, e] and strictly
decreasing on the interval [e,+∞). Furthermore, the function is clearly one-to-one on
(0, e], since it is strictly monotonous there; the last claim of the lemma then follows
observing that (0, e1/e] ⊆ (0, e].
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Since we know the form x needs to have when {an(x)}n∈N converges, the previous lemma
allows us to rule out some values of x for which the sequence cannot converge. This is
the content of the next proposition.

Proposition 3.2. If {an(x)}n∈N converges to L > 0, then x ≤ e1/e. In particular, the
sequence fails to converge for x > e1/e.

Proof. Proposition 2.2 tells us that x = L1/L; by the first part of Lemma 3.1, the function
ϕ has a global maximum at y = e, so ϕ(L) ≤ ϕ(e) for positive L. It follows that
ϕ(L) = L1/L ≤ e1/e = ϕ(e), so the claim holds.

Now we would like to know for which values of x ≤ e1/e the sequence {an(x)}n∈R
is actually convergent. The next lemma establishes an upper bound for the sequences
generated by these values of x.

Lemma 3.3. If 0 < x ≤ e1/e we have 0 < an(x) ≤ e for all n ≥ 1. In particular, the
sequence {an(x)}n∈N is bounded.

Proof. Let 0 < x ≤ e1/e. Clearly a1(x) = x ≤ e. Suppose by induction that for some
k ≥ 1 we have ak(x) ≤ e. It follows from the recurrence relation (5) that ak+1(x) =
xak(x) ≤ (e1/e)ak(x) ≤ e. The induction principle, then, implies that an(x) ≤ e for all
n ≥ 1.

Remark 3.4. It follows from Proposition 3.2 and Lemma 3.3 that if {an(x)}n∈N con-
verges to L > 0, then L ≤ e. This implies that if L > e, then Equation (3) has no
solution. In particular, we see that the informal procedure used to obtain (4) is a fallacy
(this is also a consequence of Theorem 2.1, but we do not need the full power of the
theorem here).

Since the previous lemma informed us that {an(x)}n∈N is bounded for 0 ≤ x ≤ e1/e, we
can deduce convergence if we know that the sequence is monotonic. Although this is not
true of every x on the interval, as we will see later, it is obviously true for x ≥ 1.

Proposition 3.5. If 1 ≤ x ≤ e1/e, then the sequence {an(x)}n∈N converges.

Proof. In this case, the sequence {an(x)}n∈N is non-decreasing and, therefore, converges
since it is bounded according to Lemma 3.3.

So far, we have deduced some facts about {an(x)}n∈N with relative ease. However,
for 0 < x < 1, discussing the convergence of the sequence will be more involved and shall
require an understanding of the behavior of the subsequences of even and odd indexes.

From (5), we obtain

a2k−1(x) =

{
x, (k = 1)

x(x
a2k−3(x)), (k ≥ 2)

and

a2k(x) =

{
xx, (k = 1)

x(x
a2k−2(x)), (k ≥ 2)

The function δx(y) = x(x
y) (y ∈ R) will be useful in the study of the convergence of the

subsequences.
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Lemma 3.6. For every 0 < x < 1, the function δx(y) = x(x
y) (y ∈ R) is strictly

increasing.

Proof. This may be verified by direct differentiation or by considering that δx(y) =
νx(νx(y)), where νx(y) = xy (y ∈ R), that is, δx is a composition of two strictly de-
creasing functions.

Lemma 3.7. If 0 < x < 1, then the subsequence of even indexes {a2k(x)}k∈N is strictly
decreasing, while the subsequence of odd indexes {a2k−1(x)}k∈N is strictly increasing.

Proof. Lemma 3.6 yields that a1(x) = δx(0) < δx(x) = a3(x). Assume by induction that
for some k ≥ 1, we have proved that a2k−1(x) < a2k+1(x). Then again, by Lemma 3.6, it
follows that

a2k+1(x) = δx(a2k−1(x)) < δx(a2k+1(x)) = a2k+3(x).

Thus it follows by induction that the subsequence of odd indexes is strictly increasing.
It is straightforward to conclude by an analogous argument using the function δx

that the subsequence of even indexes is strictly decreasing.

The function in the next definition will also be useful in the study of the conver-
gence of the subsequences of even and odd indexes.

Definition 3.8. For each x > 0, define

Hx(y) = y − x(xy) (y ∈ R).

The importance of the function Hx is due to the fact stated in the following lemma.

Lemma 3.9. If the subsequences of even and odd indexes of {an(x)}n∈N are both conver-
gent, their respective limits (which may be distinct) are zeroes of the function Hx.

Proof. Let {a2k(x)}k∈N converge to P and {a2k−1(x)}k∈N converge toQ. Taking the limit
on (5) for even and odd n, it follows that

P = xQ and Q = xP . (6)

From the equations on (6), one verifies that P and Q satisfy

Hx(P ) = Hx(Q) = 0.

Since a sequence converges if and only if the subsequences of even and odd indexes have
the same limit, we are interested in knowing when these limits are equal; because the
limits are zeroes of Hx, it is useful to obtain a condition that prevents this function from
having multiple zeroes. The next lemmas accomplish this.

Lemma 3.10. The function ψ(y) = yey (y ∈ R) admits a unique global minimum at
y = −1.

Proof. The global minimum follows immediately from the analysis of the signal of the
derivative of ψ: ψ′(y) = ey(1 + y).

Lemma 3.11. If e−e ≤ x ≤ 1, then Hx is one-to-one.
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Proof. If x = 1 the function Hx is trivially one-to-one, so assume x < 1. Denoting by
H ′x the derivative of the function Hx, we have

H ′x(y) = 1− (lnx)2(xy)
(
x(x

y)
)
.

Now use the change of variable z = xy lnx to write H ′x in terms of z as

hx(z) = 1− (lnx)zez,

that is, hx(z) = H ′x(y). Since 0 < x < 1, we have lnx < 0; this and Lemma 3.10
together yield

hx(z) ≥ 1 + e−1(lnx), (7)

and equality will only hold at the global minimum z = −1. If lnx > −e, the right-hand
side of (7) is positive, thus Hx is strictly increasing when x > e−e; for x = e−e the right-
hand side of (7) is 0, but since equality only holds for a single value of z we have that hx
is positive save for a single point, and so Hx is yet strictly increasing. Thus the function
Hx is one to one for every e−e ≤ x ≤ 1.

The intended use of the previous lemma is as follows: if we know that the subse-
quences of even and odd indexes of {an(x)}n∈N are both convergent, then Lemma 3.9 tells
us that their limits are zeroes of Hx; Lemma 3.11 further assures us that if e−e ≤ x ≤ 1,
Hx cannot have multiple zeroes, and thus {an(x)}n∈N converges. Of course, we still need
to prove that the even and odd subsequences actually converge; we will do this momen-
tarily.

Note also that the injectivity of Hx provided by Lemma 3.11 does not impose a
necessary condition for convergence of {an(x)}n∈N. Indeed, it is possible to prove that
if x > 1, the function Hx is not one-to-one, so it may very well have multiple zeroes.
However, the zeroes corresponding to the limits of the even and odd subsequences need
not be distinct (and in fact we know that they cannot be distinct if 1 < x ≤ e1/e, since we
already know that {an(x)}n∈N converges for these values of x).

We are now in position to extend the interval of convergence of the sequence
{an(x)}nN beyond what we have obtained thus far.

Proposition 3.12. The sequence {an(x)}n∈N converges for e−e ≤ x < 1.

Proof. Lemmas 3.3 and 3.7 imply that there exist real numbers P andQ such that {a2k(x)}k∈N
converges to P and {a2k−1(x)}k∈N converges to Q. Lemma 3.9 yields that Hx(P ) =
Hx(Q) = 0. Since by Lemma 3.11, the function Hx is one-to-one, we must have
P = Q.

Now it is left to discuss the case of 0 < x < e−e. We shall establish that the
sequence {an(x)}n∈N diverges for these values of x. We will do this by proving that the
subsequences {a2k(x)}k∈N and {a2k−1(x)}k∈N possess distinct limits. A little more work
is needed before reaching this goal.

Lemma 3.13. The following hold.

(a) If s ≥ e−1, then x(x
s) > e−1 for all x 6= e−1/s.

(b) If 0 < x < e−e, then e−1 is not a zero of the function Hx.
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Proof. Let s > 0 and consider the function ρs(x) = x(x
s) (x > 0). An analysis of the

signal of the derivative of ρs,

ρ′s(x) = xs−1ρs(x)(s lnx+ 1),

shows that the function has a unique global minimum at x = e−1/s. Thus if s ≥ e−1 and
x 6= e−1/s, we have

x(x
s) > e−1/(se) ≥ e−1.

For Item (b), set s = e−1 and notice that e−1/s = e−e, so by Item (a) we have x(xs) > e−1

so long as x 6= e−e, which yields Hx(e
−1) < 0; in particular, Hx is negative if 0 < x <

e−e.

Lemma 3.14. For each 0 < x < e−e, we have a2p−1(x) < e−1 < a2q(x) for every
p, q ∈ N.

Proof. We first prove by induction that a2k(x) > e−1 for every k ∈ N. Item (a) of
Lemma 3.13 with s = 1 implies that for each 0 < x < e−1 we have xx > e−1, hence
a2(x) > e−1, which is the base case of the induction. Now assume that for some k ≥ 1,
we have a2k(x) > e−1. We want to again apply Item (a) of Lemma 3.13, this time with
s = a2k(x); since s > e−1 and x < e−e, it follows that x 6= e−1/s, thus we conclude that

a2k+2(x) = x

(
xa2k(x)

)
> e−1,

so the induction is complete for the subsequence of even indexes.
Finally, note that a1(x) < e−1 and, for all k ≥ 1, it is straightforward that

a2k+1(x) = xa2k(x) < xe
−1

< (e−e)e
−1

= e−1.

The following Proposition summarizes the latter results.

Proposition 3.15. For each 0 < x < e−e, the sequence {an(x)}n∈N diverges.

Proof. It follows from Lemmas 3.3 and 3.7 that the subsequences {a2k(x)}k∈N and {ak−1(x)}k∈N
converge to real numbers R and S, respectively. From Lemma 3.14 we know that S ≤
e−1 ≤ R. In addition, Lemma 3.9 and Item (b) of Lemma 3.13 assure that S < e−1 < R.
Thus the sequence {an(x)}n∈N diverges.

Our work is almost done. We now have a complete understanding of which values
of x generate a convergent sequence {an(x)}n∈N. Propositions 3.2, 3.5, 3.12, and 3.15
together imply the following:

Proposition 3.16. The sequence {an(x)}n∈N converges if and only if e−e ≤ x ≤ e1/e.

All we have left in order to establish Theorem 2.1 is to relate the values of x from the last
Proposition with the corresponding limits of {an(x)}n∈N.

Proof of Theorem 2.1. We know from Proposition 3.16 that {an(x)}n∈N converges if and
only if e−e ≤ x ≤ e1/e. For each x on this interval, let λ(x) = lim an(x). Then, the
values L for which Equation (3) has a solution are precisely the numbers on the image
of the interval [e−e, e1/e] by the function λ. By Proposition 2.2, the function λ satisfies
x = λ(x)1/λ(x); thus ϕ(λ(x)) = x, where ϕ is the function in Lemma 3.1, that is, ϕ is a
left inverse for the function λ. By Remark 3.4 and Lemma 3.7, we have λ(x) ∈ (0, e].
But, Lemma 3.1 also tells us that ϕ is one-to-one and onto the interval (0, e1/e]; since
this interval contains the domain of λ and ϕ(e−1) = e−e, it folows that the image of λ is
precisely the interval [e−1, e], establishing the theorem.
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