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Abstract

We present a summary of the principal results on the index of a tangent k-field with finite

singularities defined on a manifold. If the manifold is a closed connected smooth oriented one and the

index depends only on the oriented homotopy type of the manifold, such index is expressed precisely

in terms of the generators of the 2-primary components of the homotopy groups in dimension n− 1

of the real Stiefel manifold of k-frames in Rn, where n is the dimension of the manifold. In the

non-orientable case, the index is defined as a equivalent class belonging to a certain quotient group.

1 Introduction

The subject of indices of tangent k-fields with finite singularities defined on manifolds has been

very much studied, specially in the second half of last century. Our purpose is to write a simple survey

for those readers who would like to be acquainted with this research area, presenting a summary of

the classical results and pointing out the relevant references. A good introduction for the subject can

be found in [21]. For a reference written in Portuguese see [18]. The general idea is to use algebraic

invariants of the manifold to detect its geometric property of admitting a tangent k-field with finite

singularities or without singularities. First one has to deal with the problem of the existence a of tangent

k-field with finite singularities defined on the manifold. If this is possible, then one can define the index

of this k-field and it measures the possibility of removing the singularities. It must be null in order to

remove the singularities [20]. The index is the obstruction to obtain a k-field without singularities on

the manifold.

In section 2 we present the definition of the index of a tangent k-field defined on a closed connected

smooth manifold, for the case when the manifold is oriented and the case when the manifold is non-

orientable [3], [20], [18].

In section 3 we give a brief history of the theory of k-fields, presenting the main results and their

respective references.
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We will omit the proves of the results presented, for the technical details can be found in the cited

references.

2 Index of a tangent k-field with finite singularities

Let M be a closed connected oriented smooth manifold of dimension n and, for each x ∈M , let us

denote by TxM the tangent space to the manifold M at x and by (TM, p,M) the tangent bundle of M ,

where TM =
⋃

x∈M (TxM) and p : TM →M is the projection p(x, vx) = x, vx ∈ TxM .

Definition 2.1 (continuous tangent field) A continuous tangent field defined on M is section of the

tangent bundle of the manifold M . It is a continuous function s : M → TM , such that p ◦ s = idM .

Definition 2.2 (tangent k-field) A continuous tangent k-field defined on a manifold M of dimension

n, or simply a k-field on M , where 1 ≤ k ≤ n, is an ordered k-tuple u = (u1, u2, . . . , uk) such that each

ui, 1 ≤ i ≤ k, is a section of the tangent bundle of M. That is, each ui, 1 ≤ i ≤ k, is a continuous tangent

vector field defined on M .

Definition 2.3 (singularity set) Let u = (u1, u2, . . . , uk) be a k-field defined on M . The singularity

set of u, denoted by S(u) is the set

S(u) = {x ∈M | u1(x), . . . , uk(x) are linearly dependent tangent vectors}.

When S(u) = ∅ the k-field is said to be a k-field without singularities. If S(u) is a finite set, the k-field

is said to be finitely singular or with finite singularities.

Remark 2.1 The singularity set does not need to be finite. As an example take M = S1×D2, where S1 ⊂
R2 is the unidimensional sphere and D2 ⊂ R2 is the unitary 2-disk, having the origin as its center. Define

a tangent vector field without singularities on S1 by u1 : S1 → T (S1), u1(x1, x2) = ((x1, x2), (−x2, x1))

and a radial tangent vector field on D2, u2 : D2 → T (D2), u2((y1, y2)) = ((y1, y2), λ(y1, y2)), λ 6= 0. The

unique singularity of this radial field is the origin. Consider the 2-field on M = S1 × D2, defined by

u((x1, x2), (y1, y2)) = (u1(x1, x2), u2(y1, y2)). The singularity set S(u) = {((x1, x2), (0, 0)) ∈ S1 ×D2} is

homeomorphic to S1.

Let us suppose that a closed connected smooth manifold admits a k-field with finite singularities. The

index of the k-field u, denoted by ind(u), is the obstruction to obtain a k- field defined on M without

singularities. That is, the index of a k-field defined on M is the obstruction to remove the singularities.

In order to define ind(u), we will consider the real Stiefel manifold of k-frames in Rn, denoted by Vn,k.

The index of the k-field u will be expressed in terms of the generators of the homotopy group πn−1(Vn,k)

[1], [20]. It is important to know when the index of a k-field defined on M does not depend on the

particular k-field u, but only on the oriented homotopy type of the manifold M .
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2.1 Index of a tangent k-field with finite singularities defined on an oriented

manifold

Let M be a closed connected smooth manifold of dimension n and suppose that M admits a k-field

u = (u1, u2, . . . , uk) with finite singularities. Let x ∈ S(u) and consider a local chart (U, f), f : U → Rn,

for the singularity x, such that f(x) = 0, f(U) ⊃ D2 and U ∩ S(u) = {x}. Recall that a chart (U, f)

induces a local orientation in the neighborhood U of the singularity x. Let Vn,k denote the real Stiefel

manifold of k-frames in Rn.

Definition 2.4 (local index of the k-field u at a singularity) The local index of the k-field u at

the singularity x is the homotopy class of the map fx : Sn−1 → Vn,k, defined by

fx(z) = (df(u1(f−1(z)), df(u2(f−1(z)), . . . , df(uk(f−1(z))))

Notice that the k-tuple (df(u1(f−1(z)) . . . df(uk(f−1(z)))) is a k-frame in Rn.

The local index of the k-field u at the singularity x is

indx(u) = [fx] ∈ πn−1(Vn,k)

In order to simplify the notation above, we have omitted the point f−1(z), where the differential df is

evaluated, that is, we are denoting dff−1(z)(ui(f
−1(z)) simply by df(ui(f

−1(z)), 1 ≤ i ≤ k.

Remark 2.2 The local index of a k-field at a singularity x depends on the choice of the chart, once the

chart induces a local orientation on the neighborhood U . But if we chose two charts (U, f) and (V, g),

such that x ∈ U ∩V , both inducing the same local orientation in a neighborhood of x, then the local index
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of a k-field, u, defined on the manifold M , at a singularity x ∈M , is independent of the chart chosen to

define it. Now let us consider an orientable manifold M and let us fix an orientation on M . Any chart

(U, f) belonging to the differentiable structure of the oriented manifold M induces a local orientation

which is compatible with the fixed orientation of the manifold. So the local index for oriented manifolds

is well defined. The properties of the local index of k-fields can be found in [20], [18].

Definition 2.5 (index of the k-field u defined on an oriented manifold) The index of the k-field

with finite singularities, u, defined on a closed connected oriented smooth manifold of dimension n is

given by

ind(u) =
∑

x∈S(u)

indx(u) ∈ πn−1(Vn,k)

Example 2.1 Let M3 be a closed oriented manifold of dimension 3. The index of any 3-field u =

(u1, u2, u3) with finite singularities is null. So, M admits a 3-field without singularities, this is M is

parallelizable. In fact, ind(u) ∈ π2(V3,3) = π2(O(3)). From the induced homotopy exact sequence of the

fibration SO(3)
i→ O(3)→ Z2, where i is inclusion, we have that

π2(O(3)) ∼= π2(SO(3)) ∼= π2(RP3) ∼= π2(S3) = 0

So, π2(O(3)) = 0 and ind(u) has to be null.

Remark 2.3 Although the index of a k-field u with finite singularities on a closed oriented manifold

belongs to πn−1(Vn,k), not all elements of this homotopy group might occur as the index of a k-field.

By Koschorke [11], if 2k + 1 < n, n =dim M , then ind(u) belongs to the image of the projection

p : πn−1(Vn,k+1)→ πn−1(Vn,k). Now, considering the projection of 8-fields to 7- fields, p : πn−1(Vn,8)→
πn−1(Vn,7), there is an element α ∈ πn−1(Vn,7) that does not belong to p(πn−1(Vn,8)). So, there is not

any 7-field u such that ind(u) is equal to α (see [4]). Using Nomuras notation [16], this element α is

equal to i3[ν].

2.2 Index of a tangent k-field with finite singularities defined on non-orientable

manifold

Let M be an orientable manifold and consider the two possible orientations on M . If we use a

chart inducing one local orientation on a neighborhood of the singularity of x and another one inducing

the opposite local orientation, then the indices, [f ] and [f̃ ], defined using one chart and the other one

that induces the opposite local orientation differs. They are related by [f̃ ] = −µ?[f ], where µ? is the

homotopy class of the involution µ : Vn,k → Vn,k that changes the sign of a row of a n× k-matrix which

represents an element of the Stiefel manifold Vn,k. See [10] and [18] for further informations about the

involutions defined on Stiefel Manifolds.

Let us now consider a non-orientable manifold and the quotient group:

π(n, k) = πn−1(Vn,k)/(1 + µ)πn−1(Vn,k)
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The image of ind(u) in the quotient group π(n, k) is independent of the the system of local orientations

used to define the ind(u). So, the index of a k-field u defined on a non-orientable closed connected

smooth manifold is defined as

I = [ind(u)] = ind(u) + (1 + µ)πn−1(Vn,k)

3 A brief history of k-fields

Let Mn be a closed connected smooth manifold of dimension n and suppose that it admits a continuous

tangent k-field u = (u1, . . . , uk), for 1 ≤ k ≤ n, with finite singularities. Our aim is to study the

possibility of defining a continuous tangent k-field without singularities, also called a k-frame, on the

manifold. The index of the k-field is the obstruction to remove the singularities and it is given by means

of an algebraic invariant of the manifold. So, if the index of the k-field is null it means that it is possible

to define a continuous tangent k-field without singularities on the manifold.

1. For k = 1.

When k = 1 we have the classical result known as Poincaré-Hopf Theorem that says that the index

of a continuous tangent vector field with finite singularities defined on a closed oriented manifold is

independent of the choice of vector field and it is equal to ind(u) = χ(M)ιn ∈ πn−1(Sn−1), where

χ(M) is the Euler characteristic of the manifold M and ιn is the generator of πn−1(Sn−1), which

is isomorphic to Z. Thus, such index, which is the sum of the local indices at each singularity, is

identified with the Euler characteristic, χ(M), and the manifold admits a continuous tangent vector

field if and only if its Euler characteristic is null (see [8], [15]). Jules Henri Poincaré (1854-1912)

proved the theorem for manifolds of dimension two. In 1926, Heinz Hopf (1894-1971) generalized

the result for manifolds of higher dimensions. For history issues see [23].

2. For k = 2, M oriented.

The problem of determining the index of a 2-field with finite singularities defined on a closed

oriented connected smooth manifold was completely studied by Thomas [21], [22], F. Hirzebruch

and H. Hopf [9], Atiyah and Dupont [2], [3], Frank [7] and Mahowald [13]. Such a index belongs

to πn−1(Vn,2), which is isomorphic to Z2, for n odd and isomorphic to Z ⊕ Z2, for n even. The

computations of the index of a 2-field with finite singularities are presented in table 1 of [21] and

table 15 of [4].

For k = 2, n = 2, and n = 3, if M is an oriented manifold, then M admits a 2-field with fi-

nite singularities. For dim(M) = 2, M an oriented manifold, the index of the 2-field is independent

of the particular 2-field and indu = χ(M) [21]. For dim(M) = 3, M an oriented manifold, example

2.1 shows that it is parallelizable. So in particular, M has a 2-field without singularities, that is

ind(u) = 0.
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For k = 2, n = 4, M an oriented manifold, F. Hirzebruch and H. Hopf [9] proved that ind(u)

is independent of the k-field u if and only if the homology group H2(M,Q) = 0.

For k = 2, n > 4, Mn an oriented manifold, M. F. Atiyah and J. L. Dupont [2], [3] proved

that ind(u) is independent of the k-field u. It depends only on the oriented homotopy type of the

manifold.

3. For k = 2, Mn nonorientable.

The index of a 2-field on a nonorientable manifold is not necessarily independent of the choice of

the particular 2-field.

According to Thomas [21], if n is odd, w1
2(M) = 0, the index of a 2-field is independent of

the choice of the 2-field. But, if n is odd, w1
2(M) 6= 0, for any class u ∈ Hn−2(M,Z2), one can

find a 2-field u = (u1, u2) with finite singularity, such that

ind(u) = (w1
2(M).u)[M ] ∈ Z2.

For further references for the case k = 2 and M a non-orientable manifold see Pollina [17], who

describes the obstructions to a tangent 2-field defined on an even dimensional nonorientable man-

ifold and also [14], who treated a more general problem, that includes the existence of 2-fields on

nonorientable manifolds as a particular case.

4. For k = 3.

For closed oriented manifolds there are results of Atiyah and Dupont [3], [6] and for closed nonori-

entable manifolds there are results of Koschorke [11], [12] and Randall [20]. A good summary of

the necessary and sufficient conditions for the existence of a 3-field defined on oriented as well as

on nonorientable manifolds can be found in [20].

For k = 3, n = 4, M an oriented manifold, the result already cited of Hirzebruch and Hopf

[9] is still true. The index of a 3-field with finite singularities is independent of the k-field u if and

only if the homology group H2(M,Q) = 0.

k = 3, n > 5, Mn an oriented manifold, M. F. Atiyah and J. L. Dupont [2], [3] proved that

ind(u) is independent of the k-field u. It depends only on the oriented homotopy type of the

manifold.

5. For k = 4.

Results for 4-fields on closed oriented manifolds can be found in [11], [19], [1] and [4]. Arraut and
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Randall proved in [3] that when dim(M) = n ≡ 3mod 4 the index of a 4-field with finite singulari-

ties, u, defined on a closed oriented manifold may depend on the 4-field u. Nevertheless, when the

Manifold has dimension odd and it is a spin one, that is w2(M) = 0, where w2(M) is the second

Sitifel-Whitney class of M , then the index of a 4-field is independent of the 4-field u. A complete

table for the index of a 4-field defined on a closed oriented manifold can be found in [4].
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6. For k = 5 and k = 6.

Using the isomorphim p5 : πm−1(Vm,6) −→ πm−1(Vm,5), it is clear that the indices of 6-fields are

similar to the indices of 5-fields. See [5].

We remark that the projections of k-fields with finite singularities to r-fields with finite singularities,

for r < k, allows us to use the already known indices of lower dimensions, r, to determine the indices

of k-fields for higher dimension of k. Many results for the index of a k-field with finite singularities, for

k > 6 follow easily using this technique. The computations depend on the equivalent class of n mod k.

In some cases difficult computations may arise. It is also important to ask when the index of a k-field

is independent of the given k-field. Thus, for k > 6 the problem of determining the indices of a k-field

with finite singularities remains open in many cases, depending on the dimension of k and the equivalent

class of n mod k.

Different methods have being used to compute the index of a k-field, mainly index theory by Atiyah

and Dupont, K-theory by Frank and Randall, Postnikov tower resolution by Thomas and others and the

analysis of the obstruction using normal bordism theory by Koschorke.

The defitions of index of a k- field with finite singularities can also be applied to compact manifolds

with boundary. In that case, the k-field must obey some property when restrict to the boundary, ∂M ,

of the manifold and it is supposed that S(u) ⊂M −∂M . As a reference for k-fields defined on manifolds

with boundary see [3]. If the manifold is not compact and it admits a k-field with finite singularities all

of them being isolated singularities, the definition the index of the k-field still applies (see [18]).
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