• M Iqbal Jeelani Division of Agricultural Statistics, SKUAST-K, Indi
  • Carlos N Bouza Universidad de La Habana
  • Jose M Sautto Universidad Autónoma de Guerrero, Campus Costa Chica, Acapulco , Mexico




DOI: 10.12957/cadest.2015.19114


In this paper, we explore the feasibility of using RSS (Ranked Set Sampling) in improving the estimates of the population mean in comparison  to SRS (Simple Random Sampling) in Horticultural research. We use an experience developed with a survey of apples in India. The numerical results suggest that RSS procedure results in a substantial reduction of standard errors, and  thus provides more efficient estimates than SRS, in the  specific Horticultural Survey studied, using the same sample size. Then it is recommended as an easy-to-use accurate method to management of this Horticulture problem.

Key-words: Ranked Set Sampling, Simple Random Sampling, Standard Error, Accuracy.


Biografia do Autor

M Iqbal Jeelani, Division of Agricultural Statistics, SKUAST-K, Indi

Division of Agricultural Statistics,  SKUAST-K, India

Jose M Sautto, Universidad Autónoma de Guerrero, Campus Costa Chica, Acapulco , Mexico

Universidad Autónoma de Guerrero, Campus Costa Chica,

Acapulco , Mexico


Al-Omari, A. I. and C. N. Bouza (2014). Review of Ranked Set Sampling: Modifications and Applications. Revista Investigación Operacional, 35, 215-240.

Bai, Z.D. and Chen, Z.( 2003). On the theory of ranked set sampling and its ramifications.Journal of Statistical Planning and Inference109 : 81-99.

Bouza, C. (2010). Ranked set sampling for estimating of population under non-response. Revista Investigacion Operacional31 : 140-150.

Bouza, C.N. (2013). Handling Missing Data in Ranked Set Sampling, Springer Briefs in Statistics, Springer

Chen, Z. (2001). Ranked-set sampling with regression type estimators.Journal of Statistical Planning and Inference 92 : 181-192.

Chen, Z. and Bai, Z.D. (2000).The optimal ranked-set sampling scheme for parametric families.Sankhya Ser. A. 62 : 178-192.

Cochran, W.G. (1977). Sampling Techniques. John Wiley and Sons, New York.

Gaajendra, K.A. and Bouza, C. (2012). Double sampling with rank set selection in the second phase with non-response: Analytical results and Monte Carlo experiments. Journal of Probability and Statistics.23 : 45-53.

Gockowski J. and M. Ndoumbé (2004): The adoption of intensive monocrop horticulture in southern Cameroon. Agricultural Economics.30, 195–202

Jeelani, M.I., Mir, S.A., Khan,I.,Nazir,N and Jeelani,F.(2014). Non-response problems in ranked set sampling. Pakistan Journal of Statistics. 30(4), 555-562.

Kaur, A., Patil, G.P. and Taillie, C. (1997). Unequal allocation models for ranked set sampling with skew distributions. Biometrics 53 : 123-130.

Martin, W.L., Shank, T.L., Oderwald, R.G. and Smith, D.W. (1980). Evaluation of ranked set sampling for estimating shrub phytomass in Appalachian Oak forest.Technical Report No.FWS-4-80, School of Forestry and Wildlife Resources VPI & SU Blacksburg, VA.

McIntyre, G.A. (1952). A Method for unbiased selective sampling, using ranked sets. Australia Journal of Agric. Res. 3 : 385-390.

Ozkan, B., A. Kurklu and H. Akcaoz (2004): An input–output energy analysis in greenhouse vegetable production: a case studyfor Antalya region of Turkey. Biomass and Bioenergy, 26, 89–95.

Ozturk and Wolfe, D.A. (1998). Optimal ranked set sampling protocol for the signed rank test. Technical Report TR 630, Ohio State University Department of Statistics.

Risch, N. and Zhang, H. (1995). Extreme discordant sib pairs for mapping quantitative trait loci in humans. Science. 268 : 1584-1589.




Como Citar

Jeelani, M. I., Bouza, C. N., & Sautto, J. M. (2015). EFFICIENCY OF RANKED SET SAMPLING IN HORTICULTURAL SURVEYS. Cadernos Do IME - Série Estatística, 38, 37. https://doi.org/10.12957/cadest.2015.19114



Artigos Serie Estatística