Comparative evaluation of the Phoenix®, VITEK® 2, E-test® and microdilution test for vancomycin susceptibility testing in Staphylococcus aureus isolated from bloodstream infection

Authors

  • Daiana C. S. Rodrigues Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro. Rio de Janeiro, RJ, Brasil.
  • Ana Paula P. Costa Programa de Pós-Graduação Profissional em Saúde, Medicina Laboratorial e Tecnologia Forense, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro. Rio de Janeiro, RJ, Brasil
  • Paulo Roberto V. Santos Laboratório de Bacteriologia, Hospital Universitário Pedro Ernesto, Universidade do Estado do Rio de Janeiro. Rio de Janeiro, RJ, Brasil
  • Elizabeth A. Marques Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro. Rio de Janeiro, RJ, Brasil. Laboratório de Bacteriologia, Hospital Universitário Pedro Ernesto, Universidade do Estado do Rio de Janeiro. Rio de Janeiro, RJ, Brasil.
  • José F. N. Neto Programa de Pós-Graduação Profissional em Saúde, Medicina Laboratorial e Tecnologia Forense, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro. Rio de Janeiro, RJ, Brasil.
  • Robson S. Leão Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro. Rio de Janeiro, RJ, Brasil. Laboratório de Bacteriologia, Hospital Universitário Pedro Ernesto, Universidade do Estado do Rio de Janeiro. Rio de Janeiro, RJ, Brasil. https://orcid.org/0000-0003-0636-1520

DOI:

https://doi.org/10.12957/bjhbs.2021.59740

Keywords:

Staphylococcus aureus, Vancomycin, Bloodstream infection.

Abstract

Introduction: Staphylococcus aureus bacteremia causes significant morbidity and mortality, mainly by methicillin-resistant S. aureus (MRSA). Currently, vancomycin is the main choice for the treatment of infections by MRSA. Broth microdilution (BMD) remains the gold standard for measuring vancomycin MIC. However, most clinical laboratories employ practical methods in the routines, but these methods may not determine accurate vancomycin MIC values. Objectives: This study aimed to evaluate the accuracy of VITEK®2, Phoenix® and Etest® methods against BMD. Materials and Methods: A total of 78 strains (27 methicillin-sensitive S. aureus and 51 MRSA) were isolated from bloodstream infections. The vancomycin MIC was determined following CLSI and the manufacturers' recommendations. We also performed SCCmec typing, in order to identify their vancomycin MIC ratio values. Results: Most of all isolates showed values of MIC = 1 μg/mL by BMD and Phoenix®, while Etest® and VITEK® 2 determined the majority with MIC = 1.5 and 0.5 μg/mL, respectively. Thus, Etest® and VITEK® 2 tended to overestimate and underestimate, respectively, the MIC values. Three MRSA isolates that were vancomycin susceptible by the BMD were vancomycin-intermediate by Etest®. The SCCmec II (39%) and IV (51%) were the most frequent, and there was no relationship between the type of SCCmec and the MIC values. Conclusions: The results showed that vancomycin MICs vary according to the test method. It is essential that clinicians consider the differences in MIC results determined by different methods, since the MIC value is generally the parameter used by clinicians to select the appropriate therapy.

References

Guimaraes AO, Cao Y, Hong K, et al. A prognostic model of persistent bacteremia and mortality in complicated S. aureus bloodstream infection. Clin Infect Dis. 2018;68(9):1502-1511.

Adani S, Bhowmick T, Weinstein MP, et al. Impact of Vancomycin MIC on Clinical Outcomes of Patients with Methicillin-Resistant Staphylococcus aureus Bacteremia Treated with Vancomycin at an Institution with Suppressed MIC Reporting. Antimicrob Agents Chemother. 2018;62(4):e02512-17.

Balakuntla J, Prabhakara S, Arakere G. Novel rearrangements in the staphylococcal cassette chromosome mec type V elements of Indian ST772 and ST672 methicillin resistant Staphylococcus aureus strains. PLoS One. 2014;9(4):e94293.

Kaya H, Hasman H, Larsen J, et al. SCCmecFinder, a Web-Based Tool for Typing of Staphylococcal Cassette Chromosome mec in Staphylococcus aureus Using Whole-Genome Sequence Data. mSphere. 2018;3(1)e00612-17.

Kalimuddin S, Chan YFZ, Phillips R, et al. A randomized phase 2B trial of vancomycin versus daptomycin for the treatment of methicillin-resistant Staphylococcus aureus bacteremia due to isolates with high vancomycin minimum inhibitory concentrations – results of a prematurely terminated study. Trials. 2018;19(1):305.

Zuma AVP, Lima DF, Assef APDAC, et al. Molecular characterization of methicillin-resistant Staphylococcus aureus isolated from blood in Rio de Janeiro displaying susceptibility profiles to non-β-lactam antibiotics. Brazilian J Microbiol. 2017;48(2):237-241.

Diaz R, Ramalheira E, Afreixo V, et al. Evaluation of vancomycin MIC creep in Staphylococcus aureus. J Glob Antimicrob Resist. 2017;10:281–4.

Edwards B, Milne K, Lawes T, et al. Vancomycin MIC “Creep” Method Dependent? Analysis of Methicillin-Resistant Staphylococcus aureus Susceptibility Trends in Blood Isolates from North East Scotland from 2006 to 2010. J Clin Microbiol. 2012;50(2):318–25.

van Hal SJ, Lodise TP, Paterson DL. The Clinical Significance of Vancomycin Minimum Inhibitory Concentration in Staphylococcus aureus Infections: A Systematic Review and Meta-analysis. Clin Infect Dis. 2012;54(6):755–71.

San-Juan R, Fernández-Ruiz M, Gasch O, et al. High vancomycin MICs predict the development of infective endocarditis in patients with catheter-related bacteraemia due to methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother. 2017;72(7):2102–9.

de Sanctis JT, Swami A, Sawarynski K, et al. Is there a clinical association of vancomycin MIC creep, agr group II locus, and treatment failure in MRSA bacteremia? Diagn Mol Pathol. 2011;20(3):184–8.

Park S-Y, Oh I-H, Lee H-J, al. Impact of Reduced Vancomycin MIC on Clinical Outcomes of Methicillin-Resistant Staphylococcus aureus Bacteremia. Antimicrob Agents Chemother. 2013;57(11):5536–42.

Hos NJ, Jazmati N, Stefanik D, et al. Determining vancomycin Etest MICs in patients with MRSA bloodstream infection does not support switching antimicrobials. J Infect. 2017;74(3):248–59.

CLSI (2019) Performance Standards for Antimicrobial Susceptibility Testing; Twenty-seventh informational supplement. CLSI, M100-S28. Wayne, PA: Clinical and Laboratory Standards Institute.

Rossatto FCP, Proenca LA, Becker AP, et al. Evaluation of methods in detecting vancomycin MIC among MRSA isolates and the changes in accuracy related to different MIC values. Rev Inst Med Trop Sao Paulo. 2014;56(6):469–72.

Agrawal DC. Methicillin Resistant Staphylococcus aureus: Inconsistencies in Vancomycin Susceptibility Testing Methods, Limitations and Advantages of each Method. J Clin DIAGNOSTIC Res. 2015; 9(10):DC01-4.

Phillips C, Wells N, Martinello M, et al. Optimizing the detection of methicillin-resistant Staphylococcus aureus with elevated vancomycin minimum inhibitory concentrations within the susceptible range. Infect Drug Resist. 2016;9:87-92.

Bhatt M, Burgess DR, Wallace KL, et al. Impact of Susceptibility Testing Method on Antibiotic Selection for Methicillin-Resistant Staphylococcus aureus (MRSA) Bacteremia. Open Forum Infect Dis. 2018;5(1):511–2.

Han JH, Edelstein PH, Lautenbach E. Reduced vancomycin susceptibility and staphylococcal cassette chromosome mec (SCCmec) type distribution in methicillin-resistant Staphylococcus aureus bacteraemia. J Antimicrob Chemother. 2012;67(10):2346–9.

Menzies RE. Comparison of coagulase, deoxyribonuclease (DNase), and heat-stable nuclease tests for identification of Staphylococcus aureus. J Clin Pathol. 1977;30(7):606–8.

Boye K, Bartels MD, Andersen IS, et al. A new multiplex PCR for easy screening of methicillin-resistant Staphylococcus aureus SCC mec types I-V. Clin Microbiol Infect. 2007;13(7):725-7.

Álvarez R, López Cortés LE, Molina J, et al. Optimizing the Clinical Use of Vancomycin. Antimicrob Agents Chemother. 2016;60(5):2601–9.

Toyokawa M, Francisco M, Nishi I, et al. Accuracy of Commercial Susceptibility Testing Method for Measuring Vancomycin MIC Against Methicillin-Resistant Staphylococcus aureus (MRSA). Lab Med. 2011; 42(8)473–477.

Holmes NE, Johnson PDR, Howden BP. Relationship between Vancomycin-Resistant Staphylococcus aureus, Vancomycin-Intermediate S. aureus, High Vancomycin MIC, and Outcome in Serious S. aureus Infections. J Clin Microbiol. 2012;50(8):2548–52.

Rybak MJ, Vidaillac C, Sader HS, et al. Evaluation of vancomycin susceptibility testing for methicillin-resistant Staphylococcus aureus: Comparison of Etest and three automated testing methods. J Clin Microbiol. 2013;51(7):2077–81.

Kruzel MC, Lewis CT, Welsh KJ, et al. Determination of Vancomycin and Daptomycin MICs by Different Testing Methods for Methicillin-Resistant Staphylococcus aureus. J Clin Microbiol. 2011;49(6):2272–3.

Marx A, Daniels L, Miller MB, et al. Vancomycin minimum inhibitory concentration is not a substitute for clinical judgment: Response to healthcare-associated ventriculitis and meningitis. Clin. Infect. Dis. 2017; 65(8):1428–1429.

Swenson JM, Anderson KF, Lonsway DR, et al. Accuracy of Commercial and Reference Susceptibility Testing Methods for Detecting Vancomycin-Intermediate Staphylococcus aureus. J Clin Microbiol. 2009;47(7):2013–7.

Liu C, Bayer A, Cosgrove SE, Daum RS, et al. Clinical Practice Guidelines by the Infectious Diseases Society of America for the Treatment of Methicillin-Resistant Staphylococcus aureus Infections in Adults and Children. Clin Infect Dis. 2011;52(3):e18–55.

van Hal SJ, Paterson DL. Systematic Review and Meta-Analysis of the Significance of Heterogeneous Vancomycin-Intermediate Staphylococcus aureus Isolates. Antimicrob Agents Chemother. 2011;55(1):405–10.

Tomczak H, Szałek E, Błażejewska W, et al. The need to assay the real MIC when making the decision to eradicate Staphylococcus aureus with vancomycin. PostepyHig Med Dosw. 2013;67:921–5.

Sousa AGP, Da Costa TM, Cavalcante FS, et al. Vancomycin minimum inhibitory concentrations using different susceptibility methods in Staphylococcus aureus isolates. J Infect Dev Ctries. 2014;8(04):558–60.

Manfredini C, Picoli SU, Becker AP. Comparação de métodos na determinação de sensibilidade à vancomicina em Staphylococcus aureus resistente à meticilina. J Bras Patol e Med Lab. 2011;47(2):141–145.

Goldman JL, Harrison CJ, Myers AL, et al. No Evidence of Vancomycin Minimal Inhibitory Concentration Creep or Heteroresistance Identified in Pediatric Staphylococcus aureus Blood Isolates. Pediatr Infect Dis J. 2014;33(2):216–8.

Ma X, Gao P, Lv X, et al. Vancomycin MIC creep in methicillin-resistant Staphylococcus aureus (MRSA) isolates from 2006 to 2010 in a hospital in China. Indian J Med Microbiol. 2015;33(2):262.

Wilcox M, Al-Obeid S, Gales A, et al. Reporting elevated vancomycin minimum inhibitory concentration in methicillin-resistant Staphylococcus aureus: consensus by an International Working Group. Future Microbiol. 2019;14(4):345–52.

Hsu DI, Hidayat LK, Quist R, et al. Comparison of method-specific vancomycin minimum inhibitory concentration values and their predictability for treatment outcome of meticillin-resistant Staphylococcus aureus (MRSA) infections. Int J Antimicrob Agents. 2008;32(5):378–85.

Sader HS, Rhomberg PR, Jones RN. Nine-Hospital Study Comparing Broth Microdilution and Etest Method Results for Vancomycin and Daptomycin against Methicillin-Resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2009;53(7):3162–5.

da Costa TM, Morgado PGM, Cavalcante FS, et al. Clinical and Microbiological Characteristics of Heteroresistant and Vancomycin-Intermediate Staphylococcus aureus from Bloodstream Infections in a Brazilian Teaching Hospital. PLoS One. 2016;11(8):e0160506.

Yusof A, Engelhardt A, Karlsson A, et al. Evaluation of a New Etest Vancomycin-Teicoplanin Strip for Detection of Glycopeptide-Intermediate Staphylococcus aureus (GISA), in Particular, Heterogeneous GISA. J Clin Microbiol. 2008;46(9):3042–7.

Downloads

Published

2021-06-02

How to Cite

Rodrigues, D. C. S., Costa, A. P. P., Santos, P. R. V., Marques, E. A., Neto, J. F. N., & Leão, R. S. (2021). Comparative evaluation of the Phoenix®, VITEK® 2, E-test® and microdilution test for vancomycin susceptibility testing in Staphylococcus aureus isolated from bloodstream infection. Brazilian Journal of Health and Biomedical Sciences, 20(1), 11–18. https://doi.org/10.12957/bjhbs.2021.59740

Issue

Section

Original Papers