

Crises convulsivas em neonato com microcefalia associada à infecção pelo Zika vírus

Seizures in newborn with microcephaly associated to Zika virus infection Crisis convulsivas en neonato con microcefalia asociada a la infección por el virus de Zika

Lívia Pinheiro Pereira^I; Aglaya Oliveira Lima Cordeiro de Almeida^{II}; Carla Cristina Oliveira de Jesus Lima^{III}; Josely Bruce Santos^{IV}; Mauricio dos Santos Barbosa^V; Ridalva Dias Martins Felzemburgh^{VI}

RESUMO

Objetivo: analisar, a partir do caso de recém-nascido com microcefalia relacionada à infecção do vírus Zika, suas características clínicas e implicações para o cuidado em saúde e enfermagem. Conteúdo: a microcefalia é uma anomalia congênita em que o perímetro cefálico é menor ou igual a 32cm. Em 2015/2016, um surto de microcefalia associado ao vírus Zika provocou um debate internacional sobre o assunto. Através de relato de caso, descrevemos os achados característicos de uma criança com microcefalia e com repercussões neurológicas graves nas primeiras 24 horas de vida. O recém-nascido, pouco após o nascimento, apresentou episódios recorrentes de convulsões tônico-clônicas que duraram cerca de três minutos. A epilepsia associada à microcefalia torna-se um agravamento, exigindo atenção especial. Conclusão: Aumentar a conscientização e sensibilizar os cuidadores é imperativo para esclarecimentos sobre a epilepsia no ambiente familiar de forma muito clara e acessível.

Descritores: Microcefalia; Zika vírus; convulsões; recém-nascido.

ABSTRACT

Objective: to analyze, from the case of newborn with microcephaly related to Zika virus infection, its clinical characteristics and implications for health care and nursing. **Content**: microcephaly is a congenital anomaly in which the cephalic perimeter (CP) is smaller than or equal to 32cm. In 2015/2016, an outbreak of microcephaly associated with the Zika virus evoked an international debate on the subject. From a case report, we analyzed and discussed findings of a child with microcephaly and with severe neurological repercussions in the first 24 hours of life. The newborn, few hours after birth, presented recurring episodes of tonic-clonic seizures lasting about three minutes. That way, epilepsy associated with microcephaly becomes an aggravation, demanding special attention. **Conclusion**: Raising awareness and sensitizing caregivers is imperative for clarification about epilepsy in the family setting in a very clear and accessible way.

Descriptors: Microcephaly; Zika virus; seizures; newborn.

RESUMEN

Objetivo: analizar, a partir del caso de un recién nacido con microcefalia relacionada con la infección por el virus del Zika, sus características clínicas y sus implicaciones para el cuidado en salud y de enfermería. **Contenido:** la microcefalia es una anomalía congénita en la que el perímetro cefálico es menor o igual a 32cm. En 2015/2016, un brote de microcefalia asociado al virus Zika provocó un debate internacional sobre el tema. Descubrimos los hallazgos característicos de un niño con microcefalia y con repercusiones neurológicas graves. El recién nacido fue dirigido a una Unidad de Cuidados Intensivos algunas horas después del nacimiento, con episodios recurrentes de convulsiones tónico-clónicas que duraron cerca de tres minutos. De esta forma, la epilepsia asociada a la microcefalia se vuelve un agravamiento, exigiendo atención especial. **Conclusión:** aumentar la concienciación y sensibilizar a los cuidadores es imperativo para aclaraciones sobre la epilepsia en el ambiente familiar de forma muy clara y accesible.

Descriptores: Microcefalia; Zika virus; convulsiones; recién nascido.

INTRODUÇÃO

Em novembro de 2015, uma epidemia de microcefalia foi relatada no Brasil, posteriormente atribuída à infecção congênita pelo vírus da Zika. Em 2016, até o último boletim epidemiológico, foram registrados 214.193 casos prováveis de febre pelo vírus Zika no país (taxa de incidência de 104,8 casos/100 mil hab.)¹⁻³.

Recebido em: 28/09/2018 - Aprovado em: 12/12/2019

Rev enferm UERJ, Rio de Janeiro, 2019; 27:e34029

^{&#}x27;Enfermeira. Mestre. Universidade Federal da Bahia. Salvador, Brasil. E-mail: liv_pp@hotmail.com

[&]quot;Enfermeira. Mestre. Universidade Federal da Bahia. Salvador, Brasil. E-mail: aglayatriz@hotmail.com

^{III}Enfermeira. Mestre. Aluna do curso de doutorado. Universidade Federal da Bahia. Salvador, Brasil. E-mail: carlaenf78@gmail.com

^{IV}Enfermeira. Mestre. Aluna do curso de doutorado. Universidade Federal da Bahia. Salvador, Brasil. E-mail: joselybruce3@gmail.com

VEnfermeiro. Universidade Federal da Bahia. Salvador, Brasil. E-mail:msbarbosa@hotmail.com

^{VI}Enfermeira. PHD. Professora Adjunta. Universidade Federal da Bahia. Salvador, Brasil. E-mail: ridalva@gmail.com

DOI: http://dx.doi.org/10.12957/reuerj.2019.34029

Várias infecções maternas podem causar perdas fatais ou malformações - principalmente no início da gravidez - e a infecção congênita relacionada ao vírus Zika tem características semelhantes. Seus efeitos, no entanto, são teratogênicos, que é a distinção em relação a outras infecções congênitas. Por esse motivo, são necessários exames adicionais para descartar infecções como os chamados TORSCH: Toxoplasmose, Rubeola, Sífilis, Citomegalovírus e Hepatite e outros (exemplos: parvovírus, HIV, herpes, febre do Nilo Ocidental)⁴.

As características clínicas de crianças com microcefalia relacionadas ao vírus Zika são: calcificações intracranianas graves, anormalidades neurológicas, malformações graves no desenvolvimento cortical, ventriculomegalia, hipoplasia cerebelar e hipodensidade anormal da substância branca^{4,5}.

Além das repercussões neurológicas citadas, a microcefalia associada ao zika vírus pode apresentar manifestações posteriores⁴. As convulsões são consideradas os distúrbios pediátricos mais comuns e são causadas pelo aumento ou frequência aberrante das descargas neuronais. As convulsões podem resultar de origens infecciosas, neurológicas, metabólicas e traumáticas ou da ingestão de toxinas.

A epilepsia, por outro lado, é uma condição definida por duas ou mais crises não provocadas e pode ser causada por uma variedade de processos patológicos no cérebro. Um único evento convulsivo não é classificado como epilepsia e, em geral, não é tratado com medicação anticonvulsivante a longo prazo⁶. A epilepsia grave é considerada uma das possíveis repercussões clínicas da microcefalia associada ao vírus zika. Nesse artigo estudamos o caso de uma criança que apresentou convulsões nas primeiras 24 horas de vida, a partir do qual objetivou-se analisar suas características clínicas e suas implicações para o cuidado em saúde e enfermagem.

CONTEÚDO

Os detalhes deste caso confirmam outros relatos pré-existentes na literatura sobre a associação entre epilepsia, microcefalia e infecção pelo vírus Zika. Dados retrospectivos do prontuário - com permissão do Comitê de Ética sob CAEE nº 53441216.1.1001.5028 - foram utilizados para este estudo.

Estamos lidando com um caso confirmado com resultados laboratoriais completos, observações clínicas e achados de neuroimagem, considerados compatíveis com infecção congênita pelo vírus Zika. O neonato nasceu em dezembro de 2015, no nordeste do Brasil⁷.

Recém-nascido, com 39 semanas e 4 dias de gestação, do sexo masculino, nascido de cesariana, apresentação cefálica, saco amniótico intacto, recomendação de cesariana por poli-hidrâmnio e microcefalia detectada no ultrassom obstétrico. Nascido levemente deprimido, o neonato necessitou de estímulos táteis e máscara de oxigênio, obteve pontuação apgar de sete no primeiro minuto após o nascimento e nove no quinto e apresentou desproporção face - pólo cefálico.

A mãe tinha vinte anos, declarando-se negra, desempregada, afirma ter realizado seis consultas pré-natais, nega uso de álcool, cigarro e outras drogas e nega pressão alta, corrimento vaginal e transfusão de sangue. Houve sorologia negativa para toxoplasmose e Rubeola e IgM negativa para citomegalovírus. Ao ser internada no hospital, os exames de VDRL e HIV foram solicitados e retornaram negativos. A tomografia computadorizada (TC) na semana 39, dia 4, mostra polihidrâmnio, ventriculomegalia e achados sugerindo microcefalia.

Os exames mencionados eliminam a possibilidade de a microcefalia estar relacionada a outras infecções congênitas. Os principais agentes de infecções congênitas que causam calcificação cerebral e microcefalia são conhecidos como STORCH. Os anticorpos IgM e IgG para o vírus Zika foram positivos. O teste padrão-ouro para confirmar o vírus Zika é o RT-PCR, que não foi aplicado devido às limitações da instituição e do tempo de coleta. Para o diagnóstico, o exame utilizado foi o ELISA ("Enzyme Linked Immunono Sorbent Assav").

A microcefalia pode ser causada por infecções congênitas, anomalias cromossômicas, exposição a álcool e outras drogas ou exposição a toxinas ambientais, fratura prematura dos ossos cranianos (craniossinostose) e por alguns distúrbios metabólicos⁸. As consequências em longo prazo da microcefalia dependem das anomalias cerebrais subjacentes e podem variar de atraso leve, moderado ou grave no desenvolvimento motor a déficit intelectual, como paralisia cerebral.

O recém-nascido apresentava estado geral regular, hipoativo, hipo reativo, afebril, hidratado, colorido, icterícia menor, acianótica, bradipneica, microcefálica, pequenas fontanelas, sopros ventriculares bem distribuídos no sistema respiratório, sem ruídos adventícios; sons rítmicos no sistema cardiovascular, normofonéticos, sem sopros; sistema gastrointestinal globoso e flácido, sem visceromegalias, presença de ruído hidro-areal; genitália masculina típica; extremidades perfuradas sem edemas, tempo de 2 segundos de reabastecimento capilar; boa tolerância à dieta de 20ml/tempo, sem episódios de resíduo, distensão abdominal e/ou regurgitação; padrão de diurese urinária com média de 4,4ml/kg/hr sem dejeção.

DOI: http://dx.doi.org/10.12957/reuerj.2019.34029

O recém-nascido foi encaminhado para uma Unidade de Terapia Intensiva poucas horas após o nascimento, com episódios recorrentes de convulsões tônico-clônicas com duração de cerca de três minutos. Dessa forma, a epilepsia associada à microcefalia se torna um agravo, exigindo atenção especial. Após sete dias após o comprometimento com a Unidade de Terapia Intensiva, o recém-nascido apresentou considerável progresso em relação às convulsões. O fenobarbital foi o medicamento de escolha, sendo ajustado diariamente após o nascimento. No entanto, não há relatórios detalhados da equipe multiprofissional sobre a crise convulsiva e os aspectos neurológicos do neonato, negando a possibilidade de uma elucidação mais profunda dos cuidados prestados.

O primeiro episódio de convulsões tônico-clônicas ocorreu no primeiro dia de vida e, portanto, foi administrada a primeira dose de fenobarbital como a droga de escolha. Apesar disso, as convulsões continuaram e foram necessários ajustes na dose administrada. O neonato progrediu e estabilizou-se clinicamente e após sete dias recebeu alta da UTI e, eventualmente, do hospital no 28º dia de vida.

O fenobarbital é um medicamento eficaz e completo, cuja principal vantagem é o baixo custo. Pode ser utilizado em todo o seu potencial para crises tônico-clônicas generalizadas e para crises parciais simples. Os efeitos farmacológicos do fenobarbital atuam potencializando a inibição sináptica mediada pelo ácido γ-aminoburytic (GABA). Vale ressaltar que, em virtude da maturação biológica, a farmacocinética do fenobarbital em neonatos é diferente da observada nas populações pediátrica e adulta⁹⁻¹¹.

Em vez de cenários de outras infecções congênitas, supõe-se que as crianças que sofrem com infecções relacionadas ao vírus Zika tenham malformações corticais (paquigiria e polimicrogiria) localizadas principalmente nos lobos frontais. Esse predomínio frontal não havia sido descrito em outras infecções congênitas do sistema nervoso central¹². As malformações do sistema nervoso central são a segunda causa mais comum de anomalia congênita, precedida apenas por doenças cardíacas.

As malformações congênitas representam um desafio para a equipe multidisciplinar, principalmente no que diz respeito ao diagnóstico e tratamento, devido à complexidade do prognóstico e do cuidado com o recém-nascido, visto que o cuidado qualificado e eficaz está intimamente relacionado à evolução clínica^{13,14}.

No caso relatado, no entanto, não foi possível obter informações sobre o padrão neurológico e quais testes foram aplicados, visto que os registros de evolução clínica da equipe multiprofissional não incluíam esses detalhes. Os achados sugerem que o controle e manuseio adequados, após tentativas sucessivas de ajuste da droga de escolha, garantem estabilidade hemodinâmica, relacionamento familiar precoce e desenvolvimento de outras áreas fundamentais para a reabilitação da criança com qualidade de vida.

Episódios convulsivos não tratados podem levar à morte, paralisia cerebral e outros danos neurológicos. Os estudos de caso são indispensáveis para uma prática clínica baseada em evidências científicas, deixando de lado o empirismo e os cuidados fora de foco. Quando se trata de convulsões, elas precisam de abordagens flexíveis, informadas e descritivas, com base nos episódios específicos ou recorrentes apresentados. Recomendamos a criação de um Protocolo Operacional Padrão ou instrumentos de avaliação multiprofissional que forneçam subsídios para um gerenciamento rápido e eficaz, resolutivo diante de episódios de crise convulsivos na esfera hospitalar.

Cuidar de crianças com microcefalia com convulsões requer que o profissional de enfermagem desenvolva um conjunto de importantes habilidades técnicas e científicas relacionadas à patologia, além de um cuidado humanizado à criança e à família. O desconhecimento da malformação congênita e de suas complicações pode atrapalhar a assistência, além de dificultar o controle de crises e a estimulação precoce. Segundo a OMS (2016), o cuidado correto e a intervenção precoce em bebês microcefálicos possibilitarão plasticidade neuronal, permitindo amplitude e flexibilidade para a progressão do desenvolvimento nas áreas motora, cognitiva e de linguagem¹⁵..

CONSIDERAÇÕES FINAIS

Aumentar a conscientização e sensibilizar os cuidadores é fundamental para esclarecer sobre a epilepsia no ambiente familiar de maneira muito clara e acessível. Sugerimos capacitar os cuidadores dessas crianças, pois traz benefícios em vários aspectos: facilita os cuidados, promove a saúde, evita agravos e minimiza os custos na atenção primária e secundária.

É certo que os dados aqui revelados descrevem uma realidade local e particular da epilepsia associada a crianças com microcefalia e não devem ser generalizados como experiências e repercussões de outras regiões. Esse não é o objetivo deste estudo. No entanto, esta pesquisa apóia a importância do processo de sistematização de enfermagem no cuidado à criança com microcefalia, favorecendo o processo de trabalho, a identificação precoce de sinais clínicos, além do *feedback* de ações educativas instrumentalizando profissionais e cuidadores.

Além disso, entende-se que o conhecimento sobre microcefalia permite uma nova visão desse contexto e, a partir daí, torna-se possível impor cuidados de enfermagem seguros, humanizados, críticos e reflexivos, auxiliando na consolidação da transformação das realidades dessas e de outras famílias que sofrem desta condição trazida pelo vírus zika.

REFERÊNCIAS

- Ministério da Saúde (Br). Secretaria de Vigilância em Saúde. Ministério da Saúde. Boletim Epidemiológico Monitoramento dos casos de dengue, febre de chikungunya e febre pelo vírus Zika até a Semana Epidemiológica 51, 2016. [cited 2019 Nov 11]. Avaliable from: http://portalarquivos2.saude.gov.br/images/pdf/2017/janeiro/12/2017_001%20-%20Dengue%20SE51 publicacao.pdf
- Ministério da Saúde (Br). Secretaria de Vigilância em Saúde. Departamento de Vigilância das Doenças Transmissíveis. Protocolo de vigilância e resposta à ocorrência de microcefalia relacionada à infecção pelo vírus Zika. Brasília (DF): Ministério da Saúde, 2015. [cited 2019 Nov 11]. Available from: http://portalarquivos2.saude.gov.br/images/pdf/2015/dezembro/09/Microcefalia---Protocolo-de-vigil--ncia-e-resposta---vers--o-1---09dez2015-8h.pdf
- 3. Ministério da Saúde (Br). Secretaria de Vigilância em Saúde. Boletim Epidemiológico. v. 46:25 2016 [cited Nov 11 2019]. Available from: http://combateaedes.saude.gov.br/situacao-epidemiologica#boletins
- 4. Hockenberry MJ, Wilson D. Wong Fundamentos de enfermagem pediátrica. Tradução Maria Inês Corrêa Nascimento. 9th ed. Rio de Janeiro: Elsevier, 2014.
- 5. França GVA, Schuler-Faccini L, Oliveira WK, Henriques CMP, Carmo EH, Pedi VD, et al. Congenital Zika virus syndrome in Brazil: a case series of the first 1501 livebirths with complete investigation. The Lancet. 2016; 388(10047):891-7. DOI: https://doi.org/10.1016/S0140-6736(16)30902-3
- Goodman B. Nova ameaça do vírus Zika para os bebês: microcefalia de apresentação tardia. Medscape. 2016 [cited 2019 Nov 11]. Available from: http://portugues.medscape.com/verartigo/6500435
- 7. Ministério da Saúde (Br). Portal da Saúde. Dengue: Perguntas e Respostas. 2015 [cited 2019 Mar 03]. Available from: http://portalsaude.saude.gov.br/index.php/perguntas-e-respostas-dengue
- Pitkänen A, Löscher W, Vezzani A, Simonato M, Lukasuiuk K, Gröhn O, et al. Advances in the development of biomarkers for epilepsy. Lancet Neurol [internet]. 2016 [cited 2019 Nov 11]; 15(8): 843–56. DOI: https://doi.org/10.1016/S1474-4422(16)00112-5
- 9. Schuler-Faccini L, Ribeiro EM, Feitosa IM, Horovitz DD, Cavalcanti DP, Pessoa A, et al. Possible association between Zika virus infection and microcephaly—Brazil, 2015. Morb Mortal Wkly Rep. [internet]. 2016 [cited 2019 Nov 11]; 65:59–62. DOI: https://doi.org/10.15585/mmwr.mm6503e2
- 10. Pastore ME, Ofuchi AS, Nishiyama P. Therapeutic control of phenobarbital. Acta Sci. Health Sci. [internet]. 2007 [cited 2019 Nov 11]; 29(2):125-31. DOI: https://doi.org/10.4025/actascihealthsci.v29i2.1082
- 11. Kwan P. Sills GJ, Brodie MJ. The mechanisms of action of commonly used antiepileptic drugs. Pharmacol. Therapeut. [internet]. 2001 [cited 2019 Nov 11]; 90:21-34. DOI: https://doi.org/10.1016/S0163-7258(01)00122-X
- 12. Varojna J, Escribano E, Martin-Calderon JL. Fenobarbital: farmacocinética, toxicología y monitorización por el laboratorio. Rev. Diagn. Biol., Las Rozas. 2001 [cited 2019 Nov 11]; 50(1):13-6. Available from: http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0034-79732001000100002&Ing=es
- 13. Barkovich AJ, Raybaud C. Pediatric neuroimaging.5th ed. USA: Lippincott Williams & Wilkins; 2012.
- 14. Botelho ACG, NeriLV, Silva MQF, Lima TT, Santos KG, Cunha RMA, et al. Presumed congenital infection by Zika virus: findings on psychomotor development a case report. Rev. Bras. Saude Mater. Infant [Internet]. 2016 [cited 2019 Aug 10]; 16(1):S39-44. DOI: http://dx.doi.org/10.1590/1806-9304201600s100004
- 15. Ministério da Saúde (Br). Secretaria de Atenção à Saúde. Diretrizes de estimulação precoce: crianças de zero a 3 anos com atraso no desenvolvimento neuropsicomotor [internet]. Brasília (DF): Ministério da Saúde; 2016 [cited 2019 Nov 11]. Available from: http://portalarquivos.saude.gov.br/images/pdf/2016/novembro/18/Diretrizes%20de%20estimulao.pdf