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A survey on modular vector fields and CY modular forms

attached to Dwork family

Uma revisão de campos vetoriais modulares e formas modulares de CY decorrentes

da famı́lia de Dwork

Younes Nikdelan a b

Resumo

Este artigo tem como objetivo fornecer uma revisão geral dos trabalhos
do autor sobre campos vetoriais modulares e formas modulares de Calabi-Yau
(CY) decorrentes da famı́lia de Dwork. Para qualquer número inteiro positivo
n, é introduzido um espaço modui T := Tn de variedades enriquecidas de CY
de dimensão n provenientes da famı́lia de Dwork. Observa-se que existe um
único campo vetorial D em T, conhecido como campo vetorial modular, cujos
componentes de uma solução podem ser expressos como q-expansões (série
de Fourier) com coeficientes inteiros. Chamamos essas q-expansões de formas
modulares de CY e verifica-se que o espaço gerado por elas possui uma estru-
tura canônica de sl2(C)-módulo que lhe confere uma estrutura algébrica de
Rankin-Cohen. Todos esses conceitos são explicitamente estabelecidos para
n = 1, 2, 3, 4.

Palavras-chave: Campo vetorial modular, forma modular de Calabi-Yau,
conexão de Gauss-Manin disfarçada.

Abstract

This article aims to give a survay of the works of the author on modular
vector fields and Calabi-Yau (CY) modular forms attached to the Dwork fam-
ily and avoid technical details. For any positive integer n, it is introduced a
moduli space T := Tn of enhanced CY n-folds arising from the Dwork family.
It is observed that there exists a unique vector field D in T, known as modu-
lar vector field, whose solution components can be expressed as q-expansions
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(Fourier series) with integer coefficients. We call these q-expansions CY mod-
ular forms and it is verified that the space generated by them has a canoni-
cal sl2(C)-module structure which provides it with a Rankin-Cohen algebraic
structure. All these concepts are explicitly established for n = 1, 2, 3, 4.

Keywords: Modular vector field, Calabi-Yau modular form, Gauss-Manin
conection in disguise.

MSC2010: 11F11, 32M25, 34M45, 14J32, 14J15, 14N35.

1 Introduction

Since introducing Calabi-Yau varieties, a vast number of works in mathematics and

theoretical physics have been dedicated to the study of related differential equations.

The solutions of these differential equations, or system of differential equations, pro-

vide us with innumerous infinite series or q-expansions (Fourier series) with integer

coefficients which are generating functions of certain quantities. In lower dimensions

n = 1 and n = 2 which are related to the elliptic curves and K3 surfaces, usually

these q-expansions are (quasi-)modular forms, however, in higher dimensions we

can not relate them with classical quasi-modular forms. Hossein Movasati by using

an algebraic method in a geometric framework, calling Gauss-Manin connection in

disguise (GMCD), introduced in a more systematic way a finite number of certain

q-expansions arising from a family of CY varieties which conjecturally can generate

all other q-expansions emerged from the same family. He called these finite number

of q-expansions as CY modular forms. Indeed, CY modular forms are solution com-

ponents of a unique canonical vector field, calling modular vector field, in a moduli

space of the considered family of CY varieties enhanced with a certain basis of the

middle de Rham cohomology space. To understand better the GMCD one can start

reading the paper [5] which applies the method to the families of elliptic curves,

and then continue with the paper [6] or the book [7]. The author in a joint work

with Movasati [8] applied GMCD to a family of CY n-folds, n ∈ N, arising from the

Dwork family, and then pushed the studies forward in subsequent papers [9, 10, 11].

The present article gives a survey of [8, 9, 10, 11] and states explicitly the essential

ingredients and objects in dimensions n = 1, 2, 3, 4.

The present article is prepared as follows. In Section 2 we first construct a moduli

space arising from the Dwork family, and then establish and discuss the main results

of [8, 9, 10] for any dimension n. We state explicitly the modular vector field, the

associated sl2(C)-module structure, solution components and some other related
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facts in dimensions n = 1, 2, 3, 4, respectively, in Section 3, Section 4, Section 5,

Section 6.

2 GMCD, sl2(C)-mdodule structure, CY modular

forms and algebraic RC structure

For any positive integer n, similarly to mirror quintic family, we construct a one-

parameter family X := Xz, z ∈ P1 \ {0, 1,∞}, of Calabi-Yau n-folds arising from

the Dwork family:

Wz := {zxn+2
0 + xn+2

1 + xn+2
2 + · · ·+ xn+2

n+1 − (n+ 2)x0x1x2 · · · xn+1 = 0} ⊂ Pn+1,

and then obtain the moduli space T := Tn of the enhanced pairs (X, [α1, α2, . . . , αn+1]),

where {α1, α2, . . . , αn+1} is a basis of the n-th algebraic de Rham cohomology

Hn
dR(X) satisfying some specific properties. Indeed, we find:

T = Spec
(
C
[
t1, t2, . . . , td,

1

tn+2(tn+2 − tn+2
1 )ť

])
, (2.1)

OT = C
[
t1, t2, . . . , td,

1

tn+2(tn+2 − tn+2
1 )ť

]
, (2.2)

in which ť is the product of
[
n+1

2

]
number of tj’s and

d := dn = dimT =


(n+1)(n+3)

4
+ 1, if n is odd;

n(n+2)
4

+ 1, if n is even.

(2.3)

Moreover, ∆ = tn+2(tn+2 − tn+2
1 ) is the discriminant of the modified Dwork family

under the transformation z = tn+2

tn+2
1

. We observe that (see [8, Theorem 1.1]) there

exist a unique vector field D := Dn and unique regular functions Yj ∈ OT, j =

1, 2, . . . , n− 2 in T such that the Gauss-Manin connection of the universal family of

T composed with the vector field D, namely ∇D, satisfies (no worries if you do not
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know Gauss-Manin connection, just keep reading and forget it):

∇D



α1

α2

α3

...

αn

αn+1


=



0 1 0 0 · · · 0 0

0 0 Y1 0 · · · 0 0

0 0 0 Y2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · Yn−2 0

0 0 0 0 · · · 0 −1

0 0 0 0 · · · 0 0


︸ ︷︷ ︸

Y



α1

α2

α3

...

αn

αn+1


. (2.4)

We conjecture that component solutions of D can be expressed as q-expansions with

integer coefficients (this is verified for n = 1, 2, 3, 4, which are stated in the next

sections). For all n, we can find vector fields W := Wn and δ := δn in T which along

with D form a copy of sl2(C) (see [9, Theorem 1.4]), i.e.:

[D, δ] = W , [W,D] = 2D , [W, δ] = −2δ ,

where [·, ·] refers to the Lie bracket of vector fields. Note that the vector fields

D,W, δ in [8, 9, 10, 11] were denoted by R,H,F, respectively. Indeed, we observe

that W and δ are in the following forms:

W =
d∑
j=1

wjtj
∂

∂tj
, for some wj ∈ Z≥0, (2.5)

δ =
∂

∂t2
, if n 6= 2 (δ = 2

∂

∂t2
, if n = 2). (2.6)

We should mention that for all odd n ≥ 3, as we will see in Section 5, we will need

to use a simple transformation to get δ as above and substitute td by t̃d, which, by

abuse of notation, will be denoted again by td.

If alternately, by abuse of notation, we suppose that tj’s are solution compo-

nents of D, then we can consider D,W, δ as differential operators on the C-algebra

generated by tj’s :

M := C
[
t1, t2, t3, . . . , td,

1

tn+2(tn+2 − tn+2
1 )ť

]
,

which is called the space of CY modular forms. By setting deg tj := wj, we provide
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the C-algebra M with an algebraic graded structure, i.e.:

M =
⊕
k∈Z

Mk,

in which Mk := {f ∈ M | deg f = k}, for all k ∈ Z, is the space of CY modular

forms of weight k. In particular, for all n ∈ N, we observe that w1 = 1, w2 =

2, wn+2 = n + 2. Using the assigned degrees (weights) it turns out that D is a

quasi-homogeneous vector field of degree 2 in T, and consequently it is a degree 2

differential operator on M , i.e., for all f ∈ Mk, we get Df ∈ Mk+2. Analogously,

we observe that Wf = kf , which is the operator multiplication by weight and

δf ∈Mk−2 decreases the weight by 2.

By comparing the sl2(C)-module structure of the space of full quasi-modular

forms with the sl2(C)-module structure of the space of CY modular forms M , it

turns out that t2 plays the role of the quasi-modular form E2 (which is the weight

2 Eisenstein series). In this way, we introduce the space of 2CY modular forms M 2

as follows:

M 2 := C
[
t1, t3, . . . , td,

1

tn+2(tn+2 − tn+2
1 )ť

]
=
⊕
k∈Z

M 2
k .

Indeed, we have M = M 2[t2]. In a conceptual comparison, the space of 2CY

modular forms M 2 is equivalent to the space of full modular forms M(SL2(Z)) =

C[E4, E6], and the space of CY modular forms M = M 2[t2] is equivalent to the

space of full quasi-modular forms M̃(SL2(Z)) = M(SL2(Z))[E2] = C[E2, E4, E6].

The reason for choosing the name ”2CY modular forms” is because of the order of

appearance of this space in the literature. In fact the space of 1CY modular forms

is M 1 := C
[
t1, tn+2,

1
tn+2(tn+2−tn+2

1 )

]
which has been studied by Movasati [7].

Let f ∈M 2
k be a 2CY modular form of weight k for some k ∈ Z. It is obvious

that Df ∈ Mk+2, however it is not necessarily a 2CY modular form. Analogous

to the Ramanujan-Serre derivation for full modular forms, we define the degree 2

Ramanujan-Serre-type derivation ∂ : M 2
∗ →M 2

∗+2 as follows:

∂f = Df + kt2f, if n 6= 2, (2.7)

∂f = Df +
k

2
t2f, if n = 2. (2.8)

Since D is a degree 2 derivation on M , due to Zagier [12], we can provide M

with a standard Rankin-Cohen (RC) structure by defining the m-th RC bracket for
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CY modular forms as follows:

[f, g]D,m :=
∑
i+j=m

(−1)j
(
m+ k − 1

i

)(
m+ l − 1

j

)
DjfDig, ∀f ∈Mk , ∀g ∈Ml ,

(2.9)

where m ∈ Z≥0, k, l ∈ Z and Djf,Dig are respectively the j-th and i-th derivative

of f and g with respect to the derivation D. It is evident that [f, g]D,m ∈Mk+l+2m.

Cohen proved that the RC bracket of modular forms is again a modular form.

Similarly, we can observe that RC bracket of 2CY modular forms is again a 2CY

modular form, i.e.,

∀f ∈M 2
k , ∀g ∈M 2

l =⇒ [f, g]D,m ∈M 2
k+l+2m . (2.10)

To prove this, we first let:

Λ :=

{
−1

2
Dt2 − 1

4
t22, if n = 2,

−Dt2 − t22, if n 6= 2,
(2.11)

and observe that Λ ∈ M 2
4. For any m ∈ Z≥0 we define the brackets [·, ·]∂,Λ,m :

M 2
k ×M 2

l →M 2
k+l+2m:

[f, g]∂,Λ,m =
∑
i+j=m

(−1)j
(
m+ k − 1

i

)(
m+ l − 1

j

)
f(j)g(i) , (2.12)

where f ∈M 2
k, g ∈M 2

l, and f(j) ∈M 2
k+2j, g(i) ∈M 2

l+2i are defined recursively

as follows

f(j+1) = ∂f(j) + j(j + k − 1)Λf(j−1), g(i+1) = ∂g(i) + i(i+ l − 1)Λg(i−1), (2.13)

with initial conditions f(0) = f, g(0) = g, f(1) = ∂f, g(0) = ∂g. Then we obtain:

[f, g]D,m = [f, g]∂,Λ,m,

which shows [f, g]D,m ∈M 2
k+l+2m. By this we provide (M 2, [f, g]D,m) with a canon-

ical RC algebra structure, in the sense Zagier [12].

In the subsequent sections we state D,W, δ and component solutions of D for

n = 1, 2, 3, 4. In what follows E2j, j = 1, 2, 3, are Eisenstein series defined as

E2j(q) = 1 + bj
∑∞

k=1 σ2j−1(k)qk with (b1, b2, b3) = (−24, 240,−504) and σj(k) =∑
d|k d

j, and η(q) = q
1
24

∏∞
k=1(1− qk) is the Dedekind eta function. We also consider
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q = e2πiτ where τ ∈ C with Im τ > 0.

3 The case n = 1

In this case we find:

D = (−9(t31 − t3)− t2t1)
∂

∂t1
+ (81t1(t31 − t3)− t22)

∂

∂t2
+ (−3t2t3)

∂

∂t3
, (3.1)

W = t1
∂

∂t1
+ 2t2

∂

∂t2
+ 3t3

∂

∂t3
, (3.2)

δ =
∂

∂t2
. (3.3)

In particular, vector field (3.2) implies deg(t1) = 1, deg(t2) = 2 and deg(t3) = 3.

We find a solution of D in terms of quasi-modular forms in M̃(Γ0(3), χ−3) (actually,

t1 and t3 are modular forms and t2 is a quasi-modular form, see [11, §3]). Indeed,

by using the transformations P3 = −2t2 − 9t21, Q3 = 9t21, R3 = 3t1t3 and S3 = t23, we

find the following Ramanujan-type system for Γ0(3):
P′3 = 1

6

(
P2

3 − Q2
3

)
Q′3 = 1

3

(
P3Q3 − Q2

3 + 54R3

)
R′3 = 2

3
P3R3 + 1

3
Q3R3 + 9S3

S′3 = P3S3 + Q3S3

, ∗′ = q
∂

∂q
=

1

2πi

d

dτ
, (3.4)

in which the relation R2
3 − Q3S3 = 0 holds. A particular solution of this system is

given as follows (see [11, Theorem 1.2]):
P3(q) = 1

4

(
E2(q) + 3E2(q3)

)
,

Q3(q) = 1
2

(
3E2(q3)− E2(q)

)
,

R3(q) = η8(q3) + 9η
8(q3)η3(q9)
η3(q)

,

S3(q) =
(
η9(q3)
η3(q)

)2

,

(3.5)

where Q3 ∈ M2(Γ0(3)), R3 ∈ M4(Γ0(3)), S3 ∈ M6(Γ0(3)) and P3 ∈ M̃2(Γ0(3)).

Moreover, if we consider

∆3 := η6(q)η6(q3),

which is a cusp form of weight 6 for Γ0(3), then ∆3 = Q3R3− 27S3 and it is a factor

of the discriminant of the Dwork family (which can be called modular discriminant

for Γ0(3)) satisfying:

∆′3 = P3∆3.
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If we consider Q3,R3, S3 as free parameters and let I := 〈R2
3 − Q3S3〉 to be the ideal

generated by R2
3 − Q3S3 in C[Q3,R3, S3], then:

M(Γ0(3)) ' C[Q3,R3, S3]

I
, (3.6)

M̃(Γ0(3)) ' C[P3,Q3,R3, S3]

I
. (3.7)

4 The case n = 2

In this case we find:

D = (t3 − t2t1)
∂

∂t1
+ (2t21 −

1

2
t22)

∂

∂t2
+ (8t31 − 2t2t3)

∂

∂t3
+ (−4t2t4)

∂

∂t4
, (4.1)

W = 2t1
∂

∂t1
+ 2t2

∂

∂t2
+ 4t3

∂

∂t3
+ 8t4

∂

∂t4
, (4.2)

δ = 2
∂

∂t2
, (4.3)

where the polynomial equation t23 = 4(t41 − t4) holds among ti’s. From (4.2) we get

deg(t1) = 2, deg(t2) = 2, deg(t3) = 4 and deg(t4) = 8. We get a solution of D in

terms of quasi-modular forms in M̃(Γ0(2)) (actually, t1 and t3 are modular forms

and t2 is a quasi-modular form). Indeed, by using the transformations P2 = 20t2,

Q2 = 40t1 and R2 = 800t3, we find the following Ramanujan-type system for Γ0(2):
P′2 = 1

8
(P2

2 − Q2
2)

Q′2 = 1
4
(P2Q2 − R2)

R′2 = 1
2
(P2R2 − Q3

2)

, ∗′ = q
∂∗
∂q
, (4.4)

whose a particular solution is given as follows (see [11, Theorem 1.1]):
P2(q) = 1

3
(E2(q) + 2E2(q2)),

Q2(q) = 2E2(q2)− E2(q),

R2(q) = 1
3
(4E4(q2)− E4(q)),

(4.5)

in which Q2 ∈ M2(Γ0(2)), R2 ∈ M4(Γ0(2)) and P2 ∈ M̃2(Γ0(2)). Moreover, if we

consider

∆2 := η8(q)η8(q2),

which is a cusp form of weight 8 for Γ0(2), then ∆2 = 1
256

(Q4
2−R2

2) and it is a factor

of the discriminant of the Dwork family (which can be called modular discriminant
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for Γ0(2)) satisfying:

∆′2 = P2∆2.

We also have:

M(Γ0(2)) = C[Q2,R2] (4.6)

M̃(Γ0(2)) = C[P2,Q2,R2] (4.7)

5 The case n = 3

In this case we obtain:

D =
(
t3 − t2t1

) ∂

∂t1
+

(
t33t4

54(t51 − t5)
− t22

)
∂

∂t2
(5.1)

+

(
t33t6

54(t51 − t5)
− 3t2t3

)
∂

∂t3
+
(
− t7 − t2t4

) ∂

∂t4

+
(
− 5t2t5

) ∂

∂t5
+
(

55t31 − 2t3t4 − t2t6
) ∂

∂t6
+
(
− 54t1t3 − t2t7

) ∂

∂t7
,

W = t1
∂

∂t1
+ 2t2

∂

∂t2
+ 3t3

∂

∂t3
+ 5t5

∂

∂t5
+ t6

∂

∂t6
+ 2t7

∂

∂t7
, (5.2)

δ =
∂

∂t2
− t4

∂

∂t7
. (5.3)

Hence deg(t1) = 1, deg(t2) = 2, deg(t3) = 3, deg(t4) = 0, deg(t5) = 5, deg(t6) =

1, deg(t7) = 2. We can find the q-expansion of a solution of D, whose first 7

coefficients are given in Table 1.

q0 q1 q2 q3 q4 q5 q6

1
24

t1
1

120
1 175 117625 111784375 126958105626 160715581780591

1
10

t2 − 1
10

17 11185 12261425 16166719625 23478405649152 36191848368238417
1
10

t3 − 1
50

13 6425 6744325 8719953625 12525150549888 19171976431076873
1

125
t4 − 1

5
13 2860 1855775 1750773750 1981335668498 2502724752660128

−t5 0 -1 170 41475 32183000 32678171250 38612049889554
1
25

t6 - 3
5

187 28760 16677425 15028305250 16597280453022 20644227272244012
−1
750

t7
1
30

3 930 566375 526770000 592132503858 745012928951258

Table 1: Coefficients of qk, 0 ≤ k ≤ 6, in the q-expansion of a solution of D = D3.

Using this solution we obtain:

Y1 =
t33

54(t51 − t5)
= 5 + 2875

q

1− q
+ 609250× 23 q2

1− q2
+ . . .

which is the Yukawa coupling given in [1].

As we can see, in this case δ is different from the form claimed in (2.6) (this
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happens in all odd cases ≥ 3). We can solve this problem using the transformation:

t̃7 := t7 + t2t4.

from which we obtain:

D(t̃7) = −54t1t3 +
t33t

2
4

54(t51 − t5)
− 2t2t̃7,

W(t̃7) = 2t̃7,

δ(t̃7) = 0.

Hence we get the vector fields D, W and δ in the chart (t1, t2, . . . , t6, t̃7) as follows:

D =
(
t3 − t2t1

) ∂

∂t1
+

(
t33t4

54(t51 − t5)
− t22

)
∂

∂t2
(5.4)

+

(
t33t6

54(t51 − t5)
− 3t2t3

)
∂

∂t3
− t̃7

∂

∂t4
− 5t2t5

∂

∂t5

+
(

55t31 − 2t3t4 − t2t6
) ∂

∂t6
+
(
− 54t1t3 +

t33t
2
4

54(t51 − t5)
− 2t2t̃7

) ∂

∂t̃7
,

W = t1
∂

∂t1
+ 2t2

∂

∂t2
+ 3t3

∂

∂t3
+ 5t5

∂

∂t5
+ t6

∂

∂t6
+ 2t̃7

∂

∂t̃7
, (5.5)

δ =
∂

∂t2
. (5.6)

Indeed, here t7 /∈M 2
2, hence the space of 2CY modular forms is the following:

M 2 = C
[
t1, t3, t4, t5, t6, t̃7,

1

t5(t5 − t51)

]
.

This transformation is new and it does not appear in pervious works.

Note that in [10] to solve the above problem we considered:

D̃ := D− t2
(
[D,

∂

∂t2
]−W

)
= D + t2t4

∂

∂t4
− t2t7

∂

∂t7
,
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then we get:

D̃ =
(
t3 − t1t2

) ∂

∂t1
+

(
t33t4

54(t51 − t5)
− t22

)
∂

∂t2
(5.7)

+

(
t33t6

54(t51 − t5)
− 3t2t3

)
∂

∂t3
+
(
− t7

) ∂

∂t4

+
(
− 5t2t5

) ∂

∂t5
+
(

55t31 − 2t3t4 − t2t6
) ∂

∂t6
+
(
− 54t1t3 − 2t2t7

) ∂

∂t7
,

W̃ = W = t1
∂

∂t1
+ 2t2

∂

∂t2
+ 3t3

∂

∂t3
+ 5t5

∂

∂t5
+ t6

∂

∂t6
+ 2t7

∂

∂t7
, (5.8)

δ̃ =
∂

∂t2
, (5.9)

which again form a copy of sl2(C). But we still could not find the q-expansion of a

solution of D̃, which is not interesting. The Gauss-Manin connection matrix of D̃ is

as follows: 
0 1 0 0

0 0 Y1 0

t2t4 0 0 −1

−t2(t2t4 + t7) t2t4 0 0

 . (5.10)

6 The case n = 4

In this case we get:

D =

(
t3 − t2t1

)
∂

∂t1
+

(
6−2t23t4t8
t61 − t6

− t22
)

∂

∂t2
(6.1)

+

(
6−2t23t5t8
t61 − t6

− 3t2t3

)
∂

∂t3
+

(
−6−2t23t7t8
t61 − t6

− t2t4
)

∂

∂t4

+

(
6−2t3t

2
5t8 + 5t41t3t8

2(t61 − t6)
− t3t4 − 2t2t5

)
∂

∂t5

+

(
− 6t2t6

)
∂

∂t6
+

(
6−2t24 − t21
2× 6−2

)
∂

∂t7
+

(
3t51t3t8
t61 − t6

− 3t2t8

)
∂

∂t8
,

W = t1
∂

∂t1
+ 2t2

∂

∂t2
+ 3t3

∂

∂t3
+ t4

∂

∂t4
+ 2t5

∂

∂t5
+ 6t6

∂

∂t6
+ 3t8

∂

∂t8
, (6.2)

δ =
∂

∂t2
, (6.3)

where the equation t28 = 36(t61−t6) holds among ti’s. Analogous to the pervious cases

we have deg(t1) = 1, deg(t2) = 2, deg(t3) = 3, deg(t4) = 1, deg(t5) = 2, deg(t6) =

6, deg(t7) = 0, deg(t8) = 3. In this case also we can find the q-expansion of a

solution components of D and their first 7 coefficients are given in Table 2. If we
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compute the q-expansion of Y2
1, then we find

1

6
Y2

1 =
1

6
(−Y2)2 =

1

63

t43
t61 − t6

= 6 + 120960 q + 4136832000 q2 + 148146924602880 q3 + 5420219848911544320 q4

+ 200623934537137119778560 q5 + . . .

which is the 4-point function discussed in [3, Table 1, d = 4]. We have also computed

the q-expansion of the modular coordinate z

z

66
=

t6
(6t1)6

= q−6264q2−8627796q3−237290958144q4−4523787606611250q5 + · · ·

(6.4)

which coincides with the one computed in [4, §6.1].

q0 q1 q2 q3 q4 q5 q6

1
20

t1
1

720
1 4131 51734044 918902851011 19562918469120126 465569724397794578388

1
216

t2 − 1
216

9 110703 2248267748 55181044614231 1498877559908208054 43378802521495632926652
1
14

t3 − 1
504

11 115137 2265573692 54820079452449 1477052190387154386 42523861222488896739828
1
24

t4 − 1
144

16 193131 3904146832 95619949713765 2594164605185043648 75018247757143686903060
1
2
t5 − 1

144
45 469872 9215455916 222628516313454 5992746995783064438 172421735348939185816992

−66t6 0 -1 1944 10066356 139857401664 2615615263199250 57453864811412558112

− 1
2
t7 − 1

72
7 32859 414746092 7395891627375 157811370338782458 3761184845284146266940

18
7

t8 − 1
3024

7 54855 1034706148 24546181658391 653902684588247058 18687787944102314534628

Table 2: Coefficients of qk, 0 ≤ k ≤ 6, in the q-expansion of a solution of D = D4.
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Cadernos do IME - Série Matemática, Rio de Janeiro, RJ, n. 17, 2021 - DOI: https://doi.org/10.12957/cadmat.2021.63348



112 Younes Nikdelan Modular vector fields and CY modular forms

[3] Greene, B. R.; Morrison, D. R.; Plesser, M. R.: Mirror manifolds in higher

dimension, Comm. Math. Phys., 173(3):559–597, 1995.

[4] Klemm, A.; Pandharipande, R.: Enumerative geometry of Calabi-Yau 4-folds,

Commun. Math. Phys., 281(3):621–653, 2008.

[5] Movasati, H.: Quasi modular forms attached to elliptic curves, I. Annales
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