A NOTE ON THE CONTINUITY OF OSELEDETS SUBSPACES

FOR FIBER-BUNCHED COCYCLES"
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Abstract

We prove that restricted to the subset of fiber-bunched elements of the space of GL(2,R)-valued

cocycles Oseledets subspaces vary continuously, in measure, with respect to the cocycle.

1 Introduction

In its simple form, a linear cocycle is just an invertible dynamical system f : M — M and a matrix-
valued map A : M — GL(d,R). Sometimes one calls linear cocycle (over f generated by A), instead, the
sequence {A"},,cz defined by

A(f @) ... A(f(2)A(z) ifn>0
AM(z) =< Id ifn=0
A(fr(x) o AN (2)7 ifn <0

for all x € M.

A special class of cocycles is given when the base dynamics f is hyperbolic and the dynamics induced
by A on the projective space is dominated by the dynamics of f. That is, the rates of contraction and
expansion of the cocycle A along an orbit are smaller than the rates of contraction and expansion of f.
Such a cocycle is called fiber-bunched (see Section 2 for the precise definitions).

Many aspects of fiber-bunched cocycles are rather well understood. For instance, it is known that their
cohomology classes are completely characterized by the information on periodic points [2, 8], generically
they have simple Lyapunov spectrum [5, 9] and in the case when d = 2, Lyapunov exponents are
continuous as functions of the cocycle [3]. In this short note, still in the context of fiber-bunched
cocycles, we address the problem of continuity of the Oseledets subspaces. More precisely, we prove that
restricted to the subset of fiber-bunched elements of the space of GL(2,R)-valued cocycles Oseledets
subspaces vary continuously, in measure, with respect to the cocycle. The proof of this result relies on

ideas from [3] and [4]. In a different context a similar statement was recently gotten by [6].
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2 Definitions and statements

Let (M,d) be a compact metric space and f : M — M be a homeomorphism. Given any z € M and
€ > 0, we define the local stable and unstable sets of x with respect to f by

We(x) :=={y e M :d(f"(z), ["(y)) <€ Yn =0},
W (z) :={y € M :d(f"(z), ["(y)) <€ ¥n <0},

€

respectively.
Following [1], we say that a homeomorphism f : M — M is hyperbolic with local product structure
(or just hyperbolic for short) whenever there exist constants Cy,e,7 > 0 and A € (0,1) such that the

following conditions are satisfied:
o d(f"(y1), f"(y2)) < Cr1A"d(y1,y2), Vo € M, Vy1,y2 € Wi (x), Vn > 0;
o d(f7"(v1), [T (w2)) < C1A"d(y1,42), Vo € M, Vy1,y2 € W (x), Vn > 0;

o If d(x,y) < 7, then W2(x) and W¥(y) intersect in a unique point which is denoted by [z, y] and

€

depends continuously on x and y. This property is called local product structure.

Fix such an hyperbolic homeomorphism and let A : M — GL(d,R) be a r-Holder continuous map.
This means that there exists Cy > 0 such that

[A(z) — A(y)[| < C2d(x, y)" for any z,y € M.

Let us denote by H"(M) the space of such r-Hélder continuous maps. We endow this space with the
r-Holder topology which is generated by norm
| A@@) = AW) |

d(z,y)

We say that the cocycle generated by A satisfies the fiber bunching condition or that the cocycle is
fiber-bunched if there exists Cs > 0 and 6 < 1 such that

| A llr:= sup || A(z) || + sup
zeM TH£Y

1A™ (@) [[[|A™ ()~ HIA™ < Cs0™

for every z € M and n > 0 where A is the constant given in the definition of hyperbolic homeomorphism.

Let p be an ergodic f-invariant probability measure on M with local product structure. Roughly
speaking, the last property means that p is locally equivalent to the product measure p® x p* where p®
and p* are measures on the local stable and unstable manifolds respectively induced by p via the local
product structure of f. Since we are not going to use explicitly this property we just refer to [3] for the
precise definition.

It follows from a famous theorem due to Oseledets (see [10]) that for p-almost every point x € M
there exist numbers A\;(x) > ... > A\x(), and a direct sum decomposition R = EL4 @ ... @ E¥4 into

vector subspaces such that

i i, A .1 n
A(z)EbA = B, and Ai(x) = nl;rr;o - log || A™(x)v ||
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for every non-zero v € E%4 and 1 < i < k. Moreover, since our measure g is assumed to be ergodic the
Lyapunov exponents \;(x) are constant on a full p-measure subset of M as well as the dimensions of the
Oseledets subspaces E-*. Thus, we will denote by A7 (A, ) = A\x(x) and AT (A, ) = A\ (z) the extremal
Lyapunov exponents and by E;’A = Eﬁ’A and E;L*A = E;’A the stable and unstable spaces respectively.
It follows by the Sub-Additive Ergodic Theorem of Kingman (see [7] or [10]) that the extremal Lyapunov
exponents are also given by )

AT(A p) = lim —log |A"(2)]

and (2.1)
_ BT 1 n —1-1
A(A ) = lim o (4 ()|

for p almost every point x € M. The objective of this note is to understand, for a fixed base dynamics
f, how does the map A — E%4 vary in the case when d = 2, that is, in the case when the cocycle A
takes values in GL(2,R).

Let d be the distance on the projective space P(R?) defined by the angle between two directions.
We say that an element A of H" (M) with AT (A, u) > A\~ (A, p) is a continuity point for the Oseledets
decomposition with respect to the measure p if the Oseledets subspaces are continuous, in measure, as
functions of the cocycle. More precisely, for any sequence {(Ax)ren} C H" (M) converging to A in the
r-Holder topology and any € > 0, we have

,u({x € M; d(B“ B4 < ¢ and d(ES4%, B54) < g}) LN
Thus, our main result is the following

Theorem 2.1. If A € H"(M) is a fiber-bunched cocycle with A\t (A, i) > A~ (A, ) then it is a continuity

point for the Oseleteds decomposition with respect to the measure p.

The hypotheses that A is fiber-bunched and p has local product structure are only used to apply the
results about continuity of Lyapunov exponents from [3]. Thus, more generally, if we have a sequence

{(Ar)ken} C H" (M) converging uniformly with holonomies to A as in the main theorem of [3], then
,u({m € M; d(E“4 E%A) < ¢ and d(ES4%, E54) < 5}) koo,

Consequently, our result also applies if we restrict ourselves to the space of locally constant cocycles

endowed with the uniform topology.

3 Proof of the theorem

Let us consider the projective cocycle Fa : M x P(R?) — M x P(R?) associated to A and f which is
given by
Fa(z,v) = (f(2), PA(z)v)
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where PA denotes the action of A on the projective space. We say that an F4-invariant measure m on
M x P(R?) projects to p if mem = pu where 7 : M x P(R?) — M is the canonical projection on the
first coordinate. Given a non-zero element v € R? we are going to use the same notation to denote its
equivalence class in P(R?).
Let R? = E54 @ E*4 be the Oseledets decomposition associated to A at the point x € M. Consider
also
S __

m® = .y 5(17E;,A)du(x)

and
mY — /M (5(%E:,A)du(x)

which are F4-invariant probability measures on M x P(R?) projecting to p. Moreover, by the Birkhoff

ergodic theorem and (2.1) we have that

A (A ) = / (e, v)dm* (z, )
M xP(R2)

and

)\+(A7M) = / @A(J;,v)dm“(aj,v)
M xP(R?)

where o4 : M x P(R?) — R is given by

A(z)v

By the (non-uniform) hyperbolicity of (A, ) we have the following.

Lemma 3.1. Let m be a probability measure on M x P(R?) that projects down to u. Then, m is
Fa-invariant if and only if it is a convex combination of m® and m* for some f-invariant functions
a,B: M — [0,1] such that a(x) + B(x) =1 for every x € M.

Proof. One implication is trivial. For the converse one only has to note that every compact subset of
P(R?) disjoint from {E", E*} accumulates on E" in the future and on E* in the past. O

Proof of Theorem 2.1. Suppose that A is a fiber-bunched cocycle such that AT (A, ) > A7 (A, ). As the

subset of fiber-bunched elements of H" (M) is open we may assume without loss of generality that Ay

is fiber-bunched for every k € N. Moreover, since the Lyapunov exponents depend continuously on the

cocycle A (see Theorem 1.1 from [3]) and AT (A, u) > A\~ (A, 1) we may also assume that AT (A, p) >

A7 (Ag, p) for every k € N. We will prove just the assertion about the unstable spaces, that is, that
k—o0

I ({x € M; d(E;“A’C,E;"A) < 5}) —— 1. The case of the stable spaces is analogous.

For each k € N, let us consider the measure

mk:/ 5(1,E3,Ak)d#(‘r)
M
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and let m" be the measure given by

m" = /M 0 ey dp().

These are Fy, and Fa-invariant probability measures on M x P(R?) respectively, projecting to p.
Moreover, my Lini Ny Indeed, let (mg,)jen be a convergent subsequence of (mg)ren and suppose
that it converges to 7). Since for each j € N the measure my; is F A, -invariant and projects to u it follows

that 7 is an F-invariant measure projecting to u. Moreover, since
j —
AT (Ak] ) M) & AT (Av ﬂ)

once the Lyapunov exponents are continuous as functions of the cocycle (see [3]) and

N i) = [ o dmi, padn
M xP(R2) M xP(R?)
we get that
AT (A, 1) =/ wadn.
M xP(R?)

Thus, invoking Lemma 3.1 and using the fact that p is ergodic it follows that = m". Indeed, otherwise

we would have n = am?® 4+ fm" with a > 0 and consequently

/ Qadn = aX™ (A, p) + BAT(A, p) < AT(A, p).
M xP(R2)

k—o0 .
Therefore, mp ——— m" as claimed.

Let g : M — P(R?) be the measurable map given by
g(z) = Ep4.

Note that its graph has full m*-measure. By Lusin’s Theorem, given € > 0 there exists a compact set
K C M such that the restriction gx of g to K is continuous and p(K) > 1 —e. Now, given § > 0, let
U C M x P(R?) be an open neighborhood of the graph of g such that

Un (K xPR?)) C Us
where
Us := {(z,v) € K x P(R?); d(v,g(z)) < 6}.
By the choice of the measures my,
m(Us) = pl{ € K; d(E24%, B24) < 6}). (3.2)

Now, as my, E2%0 1 it follows that lim inf mi(U) > m*(U) > 1 —e. On the other hand, as my (K x
P(R?)) = u(K) > 1 — ¢ for every k € N, it follows that

mp(Us) > mp(UN (K x P(R?))) > 1—2¢ (3.3)

for every k large enough. Thus, combining (3.2) and (3.3), we get that u({x € M; d(E»4% E»4) <
d}) > 1 — 2¢ for every k large enough completing the proof of Theorem 2.1.
[
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