Stabilization for a Nonlinear Beam Equation with

Localized Damping *

H. R. Crippa † and G. O. Antunes ${ }^{\ddagger}$

Abstract

In this paper, we investigate the exponential decay of the energy of the equation $$
u_{t t}+\Delta^{2} u-M\left(\int_{\Omega}|\nabla u|^{2} d x\right) \Delta u+a(x) u_{t}=0
$$ with boundary clamped condition and a local linear dissipation of the type $a(x) u_{t}$. The method of proof is direct and is based on the multipliers technique and some integral inequalities due to Haraux and we obtain explicit decay rate.

1 Introduction

In this paper we establish the exponential decay of the energy of solutions for the localized damped nonlinear equation

$$
\begin{equation*}
u_{t t}+\Delta^{2} u-M\left(\int_{\Omega}|\nabla u|^{2} d x\right) \Delta u+a(x) u_{t}=0 \tag{1.1}
\end{equation*}
$$

where $M(s), s>0$, is a nonnegative real function, Ω is a bounded open set of \mathbb{R}^{n} with smooth boundary $\partial \Omega$. We fix $x_{0} \in \mathbb{R}^{n}$ and we set

$$
m(x)=x-x_{0}, \quad \Gamma_{0}=\{x \in \partial \Omega ; m(x) \cdot v(x)>0\}
$$

and $\Gamma_{1}=\partial \Omega \backslash \Gamma_{0}$, where $v=v(x)$ is the outward normal to $\partial \Omega$.
Let $R\left(x_{0}\right)=\max _{x \in \bar{\Omega}}|m(x)|, a \in L^{\infty}(\Omega)$ and $\nabla a \in\left(L^{\infty}(\Omega)\right)^{n}$ be a nonnegative function at $x \in \Omega$ such that

$$
\begin{equation*}
a(x) \geq a_{0}>0 \quad \text { a. e. in } \omega \tag{1.2}
\end{equation*}
$$

where ω is a neighborhood of Γ_{0} and a_{0} is a positive constant.
When $n=1, M(s)=m_{0}+m s, m>0$, equation (1.1) represent the model originally proposed by Woinowsky-Kriger [20], for the transversal vibrations of an extensible beam subject to an axial internal force and $u(x, t)$ is the transverse deflection. If $n=2$ the equation (1.1) represent the "Berger approximation" of the Von Kárman equations, modelling the nonlinear vibrations of a plate [15], pg. $501-507$.

We study (1.1) submitted to boundary clamped conditions described by

$$
\begin{equation*}
u=\frac{\partial u}{\partial v}=0 \text { on } \Gamma \times \mathbb{R}^{+} \tag{1.3}
\end{equation*}
$$

[^0]and initial data
\[

$$
\begin{equation*}
u(x, 0)=u_{0}(x) \text { and } \frac{\partial u}{\partial t}(x, 0)=u_{1}(x) \text { in } \Omega . \tag{1.4}
\end{equation*}
$$

\]

Decay rates of energy of the wave equations with localized damping was studied by Zuazua [19], Nakao [14], Tébou [17] and Martinez [12] by differents methods. The same problem in the context of a Bernoulli-Euler equation (1.1) was investigated by Tucsnak [16], with a linear damping and by Charão [5] considering a nonlinear damping. Both authors obtained estimates of decay considering the local damping effetive in a neighborhood of the whole boundary $\partial \Omega$ and $M(s)=\alpha s, \alpha>0$. In the proof they used a unique continuation result of Kim [9] and a compactness argument, a technique developed by Zuazua [19]. This technique introduce in the estimates constants that are not controllable.

We solve the problem through a method introduced by Tébou [17] for the study of the wave equation which is based on the multipliers technique and on some integral inequalities due to Haraux [7], [8]. As in the proof does not use "compactness-uniqueness" argument the constants that appear in the decay rate are explicit and do not depend on the initial data. Furthermore the damping is effective only in a neighborhood of Γ_{0}.

The existence and uniqueness of the solutions for (1.1) or similar models has been studied by Ball [1] and Medeiros [13] among others authors. Decay estimates of solutions when the damping term is effective everywhere in Ω has been studied by Ball [2], Biler [3], Brito [4], Pereira [6] and Vasconcelos [18].

2 Notations, Assumptions and Main Results

Throughout this paper, we denote by $|\cdot|$ the norm in $L^{2}(\Omega)$ and $R\left(x_{0}\right)=\max _{x \in \bar{\Omega}}|m(x)|$.
The existence and uniqueness of solutions for (1.1) is guaranteed by the following result.
Theorem 2.1. Suppose that $\Omega \subset \mathbb{R}^{n}$ is a bounded domain with regular boundary and $a \in L^{\infty}(\Omega)$. Then we have:

1. If $u_{0} \in H^{4}(\Omega) \cap H_{0}^{2}(\Omega), u_{1} \in H_{0}^{2}(\Omega)$, then the problem (1.1), (1.3) and (1.4) admits an unique solution u in the class

$$
u \in C\left([0, T] ; H^{4}(\Omega) \cap H_{0}^{2}(\Omega)\right) \cap C^{1}\left([0, T] ; H_{0}^{2}(\Omega)\right)
$$

2. If $u_{0} \in H_{0}^{2}(\Omega), u_{1} \in L^{2}(\Omega)$, then the problem (1.1) admits an unique solution having the regularity

$$
u \in C\left([0, T] ; H_{0}^{2}(\Omega)\right) \cap C^{1}\left([0, T] ; L^{2}(\Omega)\right)
$$

Proof. The result follows by means of the standard semigroup techniques or Faedo-Galerkin procedure. For details see [13] and [18].

The energy associated the (1.1) is given by

$$
E(t)=\frac{1}{2}\left|u^{\prime}(t)\right|^{2}+\frac{1}{2}|\Delta u(t)|^{2}+\frac{1}{2} \widehat{M}\left(|\nabla u(t)|^{2}\right),
$$

where

$$
\begin{equation*}
\widehat{M}(\lambda)=\int_{0}^{\lambda} M(\xi) d \xi \tag{2.5}
\end{equation*}
$$

It is easy to verify that the energy E satisfies

$$
\begin{equation*}
\frac{d}{d t} E(t)=-\int_{\Omega} a(x)\left|u^{\prime}(x, t)\right|^{2} d x \tag{2.6}
\end{equation*}
$$

admitting that $a(x) \geq 0$, a.e. in Ω, we have that the energy is decreasing.
The objective of this work is to study the asymptotic behavior in time of the energy for the solutions of (1.1) when $a(x) u^{\prime}$ is effective only in the subset $\omega \subset \Omega$.

From now on we assume that $M \in C^{1}[0,+\infty)$ is a increasing function such that

$$
\begin{equation*}
M(\lambda) \geq m_{0}>0 \text { for all } \lambda \in(0, \infty) \tag{2.7}
\end{equation*}
$$

The main result of this paper is the following:
Theorem 2.2. Consider $\left\{u_{0}, u_{1}\right\} \in H_{0}^{2}(\Omega) \times L^{2}(\Omega)$. Let ω be a neighborhood of $\Gamma_{0}, a \in L^{\infty}(\Omega)$ satisfying (1.2) and M satisfying (2.7). Then there exists a positive constant τ_{0}, such that

$$
\begin{equation*}
E(t) \leq\left[\exp \left(1-\frac{t}{\tau_{0}}\right)\right] E(0), \forall t \geq 0 \tag{2.8}
\end{equation*}
$$

where τ_{0} is independent of the initial data.
The following Lemma reduces the proof of Theorem 2.2 to the proof of an appropriate estimate.
Lemma 2.1. Let $E:[0, \infty[\longrightarrow[0, \infty[$ be a nonincreasing locally absolutely continuos function and assume that there exists a constant $C>0$ such that

$$
\begin{equation*}
\int_{s}^{\infty} E(t) d t \leq C E(s) \quad \forall s \in[0, \infty[\tag{2.9}
\end{equation*}
$$

Then

$$
\begin{equation*}
E(t) \leq\left[\exp \left(1-\frac{t}{C}\right)\right] E(0), \forall t \geq C \tag{2.10}
\end{equation*}
$$

Proof. The proof is due to Haraux and can be found in [7], [8] and Komornik [10].
Let us consider s and T real numbers such that $0 \leq s \leq T<\infty$ and $\left.Q_{s}=\Omega \times\right] s, T$ [the cylindrical domain of \mathbb{R}^{n+1} with lateral bounded $\left.\Sigma_{s}=\Gamma \times\right] s, T[$.

The estimate (2.9) is obtained by means of the following lemma:

Lemma 2.2. Let u be the solution of (1.1), $q \in\left(W^{2, \infty}(\Omega)\right)^{n}, \xi \in W^{2, \infty}(\Omega)$ and $\alpha \in \mathbb{R}$. Then we have the identities,

$$
\begin{align*}
& \frac{1}{2} \int_{Q_{s}}(d i v q-\alpha)\left(\left|u^{\prime}\right|^{2}-|\Delta u|^{2}\right) d x d t+\left.\left(u^{\prime}(t), q \cdot \nabla u(t)+\frac{1}{2} \alpha u(t)\right)\right|_{s} ^{T}+ \\
& +2 \int_{Q_{s}} \Delta u \frac{\partial q_{k}}{\partial x_{j}} \frac{\partial^{2} u}{\partial x_{k} \partial x_{j}} d x d t+\int_{Q_{s}} a(x) u^{\prime}\left(q \cdot \nabla u+\frac{1}{2} \alpha u\right) d x d t+ \tag{2.11}\\
& -\frac{1}{2} \int_{Q_{s}}\{d i v q-\alpha\} M\left(|\nabla u|^{2}\right)|\nabla u|^{2} d x d t+\int_{Q_{s}} M\left(|\nabla u|^{2}\right) \nabla u \cdot \nabla q_{k} \frac{\partial u}{\partial x_{k}} d x d t+ \\
& +\int_{Q_{s}} \Delta u \Delta q \cdot \nabla u d x d t=\frac{1}{2} \int_{\Sigma_{s}} q \cdot v|\Delta u|^{2} d \Sigma,
\end{align*}
$$

and

$$
\begin{align*}
& \left.\left(u^{\prime}(t), \xi u(t)\right)\right|_{s} ^{T}-\int_{Q_{s}} \xi\left(\left|u^{\prime}\right|^{2}-|\Delta u|^{2}\right) d x d t+\int_{Q_{s}} \Delta u \Delta \xi u d x d t+ \\
& +2 \int_{Q_{s}} \Delta u(\nabla u \cdot \nabla \xi) d x d t+\int_{Q_{s}} M\left(|\nabla u|^{2}\right) \nabla u \cdot \nabla \xi u d x d t+ \tag{2.12}\\
& +\int_{Q_{s}} M\left(|\nabla u|^{2}\right)|\nabla u|^{2} \xi d x d t+\int_{Q_{s}} a(x) u^{\prime} \xi u d x d t=0
\end{align*}
$$

with the summation convention of repeated indices.
Proof. The first identity is obtained multiplying the equation in (1.1) by $q \cdot \nabla u+\frac{1}{2} \alpha u$ and integrating on Q_{s}. The identity in (2.12) is obtained by means of the multiplier $u \xi$.

3 Proof of Theorem 2.2

The proof consists in proving the estimate (2.10) and will be done in several steps. It is enought to consider $u_{0} \in H^{4}(\Omega) \cap H_{0}^{2}(\Omega), u_{1} \in H_{0}^{2}(\Omega)$ and then to use density.
Step 1. Applying (2.11) with $\alpha=n-1, q(x)=m(x)$ and observing that $\operatorname{div} m=n$ and $\Delta q=0$, we find

$$
\begin{align*}
& \frac{1}{2} \int_{s}^{T}\left(\left|u^{\prime}(t)\right|^{2}+|\Delta u(t)|^{2}+M\left(|\nabla u(t)|^{2}\right)|\nabla u(t)|^{2}\right) d t+\int_{s}^{T}|\Delta u(t)|^{2}= \\
& =\frac{1}{2} \int_{\Sigma_{s}} m(x) \cdot v|\Delta u|^{2} d \Sigma-\left.\left(u^{\prime}, m(x) \cdot \nabla u+\frac{(n-1)}{2} u\right)\right|_{s} ^{T}- \tag{3.13}\\
& -\int_{Q_{s}} a(x) u^{\prime}\left(m(x) \cdot \nabla u+\frac{(n-1)}{2} u\right) d x d t .
\end{align*}
$$

Since M is increasing we have that $\widehat{M}(s) \leq s M(s)$, where $\widehat{M}(s)$ was defined in (2.5), and therefore from (3.13) follows that

$$
\begin{align*}
& \int_{s}^{T} E(t) d t \leq-\int_{Q_{s}} a(x) u^{\prime}\left(m(x) \cdot \nabla u+\frac{(n-1)}{2} u\right) d x d t- \\
& -\left.\left(u^{\prime}(t), m(x) \cdot \nabla u(t)+\frac{(n-1)}{2} u(t)\right)\right|_{s} ^{T}+\frac{1}{2} \int_{\Sigma_{s}} m(x) \cdot v|\Delta u|^{2} d \Sigma . \tag{3.14}
\end{align*}
$$

Setting,

$$
X(t)=\left(u^{\prime}(t), m(x) \cdot \nabla u(t)+\frac{(n-1)}{2} u(t)\right)
$$

follows that

$$
|X(t)| \leq \frac{R\left(x_{0}\right)}{2} \int_{\Omega}\left|u^{\prime}\right|^{2} d x+\frac{R\left(x_{0}\right)}{2} K_{0}^{2} \int_{\Omega}|\Delta u|^{2} d x \leq R\left(x_{0}\right) \max \left\{1, K_{0}^{2}\right\} E(t)
$$

where K_{0} is the immersion's constant of the $H_{0}^{2}(\Omega) \hookrightarrow H_{0}^{1}(\Omega)$.
On the other hand, from (2.6) and Holder's Inequality

$$
\begin{aligned}
& -\int_{Q_{s}} a(x) u^{\prime}\left(m(x) \cdot \nabla u+\frac{(n-1)}{2} u\right) d x d t \leq \\
& \leq\|a\|_{L^{\infty}(\Omega)} R^{2}\left(x_{0}\right) K_{0}^{2} E(s)+\frac{1}{2} \int_{s}^{T} E(t) d t
\end{aligned}
$$

Defining $\Sigma_{s}\left(x_{0}\right)=\Gamma_{0} \times(s, T)$ and remembering that $m(x) \cdot v(x)>0$ on Γ_{0} we obtain

$$
\frac{1}{2} \int_{\Sigma_{s}} m(x) \cdot v(x)|\Delta u|^{2} d \Sigma \leq \frac{1}{2} \int_{\Sigma_{s}\left(x_{0}\right)} m(x) \cdot v(x)|\Delta u|^{2} d \Sigma \leq \frac{R\left(x_{0}\right)}{2} \int_{\Sigma_{s}\left(x_{0}\right)}|\Delta u|^{2} d \Sigma .
$$

Substituting the above estimates in (3.14) we find

$$
\begin{equation*}
\frac{1}{2} \int_{s}^{T} E(t) d t \leq C_{1} E(s)+\frac{R\left(x_{0}\right)}{2} \int_{\Sigma_{s}\left(x_{0}\right)}|\Delta u|^{2} d \Sigma \tag{3.15}
\end{equation*}
$$

where $C_{1}=R\left(x_{0}\right)\left(2 \max \left\{1, K_{0}^{2}\right\}+\|a\|_{L^{\infty}(\Omega)} R\left(x_{0}\right) K_{0}\right)$.
Step 2. Estimate of $\int_{\Sigma_{s}\left(x_{0}\right)}|\Delta u|^{2} d \Sigma$.
Consider $h \in\left(W^{2, \infty}(\Omega)\right)^{n}$ such that

$$
h=v \text { on } \Gamma_{0}, h \cdot v \geq 0 \text { on } \Gamma, h=0 \text { in } \Omega \backslash \widehat{\omega},
$$

where $\widehat{\omega}$ is another neighborhood of Γ_{0} strictly contained in ω. For the construction of such function to see Lions [11].

Choosing $\alpha=0$ and $q=h$ in the identity in (2.11) we obtain

$$
\begin{align*}
& \int_{\Sigma_{s}} h(x) \cdot v(x)|\Delta u|^{2} d \Sigma=\int_{\widehat{\omega} \times(s, T)} d i v h\left(\left|u^{\prime}\right|^{2}-|\Delta u|^{2}\right) d x d t+\left.2 \int_{\widehat{\omega}} u^{\prime}(t) h \cdot \nabla u(t) d x\right|_{s} ^{T}+ \\
& +2 \int_{\widehat{\omega} \times(s, T)} \Delta u \Delta h \cdot \nabla u d x d t+2 \int_{\widehat{\omega} \times(s, T)} a(x) u^{\prime}(h \cdot \nabla u) d x d t- \\
& -\int_{\widehat{\omega} \times(s, T)} d i v h M\left(|\nabla u|^{2}\right)|\nabla u|^{2} d x d t+2 \int_{\widehat{\omega} \times(s, T)} M\left(|\nabla u|^{2}\right) \nabla u \cdot \nabla h_{k} \frac{\partial u}{\partial x_{k}} d x d t+ \tag{3.16}\\
& +4 \int_{\widehat{\omega} \times(s, T)} \Delta u \frac{\partial h_{k}}{\partial x_{j}} \frac{\partial^{2} u}{\partial x_{k} \partial x_{j}} d x d t \leq\|d i v h\|_{L^{\infty}(\Omega)} \int_{\widehat{\omega} \times(s, T)}\left(\left|u^{\prime}\right|^{2}+|\Delta u|^{2}+M\left(|\nabla u|^{2}\right)|\nabla u|^{2}\right) d x d t+ \\
& +\left.2 \int_{\widehat{\omega}} u^{\prime}(t) h \cdot \nabla u(t) d x\right|_{s} ^{T}+2 \int_{\widehat{\omega} \times(s, T)} \Delta u \Delta h \cdot \nabla u d x d t+2 \int_{\widehat{\omega} \times(s, T)} a(x) u^{\prime}(h \cdot \nabla u) d x d t+ \\
& 2 \int_{\widehat{\omega} \times(s, T)} M\left(|\nabla u|^{2}\right) \nabla u \cdot \nabla h_{k} \frac{\partial u}{\partial x_{k}} d x d t+4 \int_{\widehat{\omega} \times(s, T)} \Delta u \frac{\partial h_{k}}{\partial x_{j}} \frac{\partial^{2} u}{\partial x_{k} \partial x_{j}} d x d t
\end{align*}
$$

Observing that

- $2 \int_{\widehat{\omega} \times(s, T)} \Delta u \Delta h \cdot \nabla u d x d t \leq 2\|\Delta h\|_{L^{\infty}(\Omega)} K_{0} \int_{\widehat{\omega} \times(s, T)}|\Delta u|^{2} d x d t$.
- $4 \int_{\widetilde{\omega} \times(s, T)} \Delta u \frac{\partial h_{k}}{\partial x_{j}} \frac{\partial^{2} u}{\partial x_{k} \partial x_{j}} d x d t \leq 2\left\|\frac{\partial h_{k}}{\partial x_{j}}\right\|_{L^{\infty}(\Omega)}\left(1+K_{1}\right) \int_{\widetilde{\omega} \times(s, T)}|\Delta u|^{2} d x d t$.
- $\left|2 \int_{\widehat{\omega}} u^{\prime}(t) h \cdot \nabla u(t) d x\right| \leq 2\|h\|_{L^{\infty}(\Omega)}\left(\int_{\widehat{\omega}}\left|u^{\prime}(t)\right|^{2} d x\right)^{1 / 2}\left(\int_{\widehat{\omega}}|\nabla u(t)|^{2} d x\right)^{1 / 2} \leq 4 K_{0}\|h\|_{L^{\infty}(\Omega)} E(t)$. Therefore

$$
\left.2 \int_{\widehat{\omega}} u^{\prime}(t) h \cdot \nabla u(t) d x\right|_{s} ^{T} \leq 8 K_{0}\|h\|_{L^{\infty}(\Omega)} E(s) .
$$

- $2 \int_{\widehat{\omega} \times(s, T)} a(x) u^{\prime}(h \cdot \nabla u) d x d t \leq \int_{s}^{T} 2 \sqrt{R\left(x_{0}\right)}\|a\|_{L^{\infty}(\Omega)}^{1 / 2}\left|E^{\prime}(t)\right|^{1 / 2}\|h\|_{\left(L^{\infty}(\Omega)\right)^{n}} K_{0} \sqrt{2}\left(\frac{E(t)}{R\left(x_{0}\right)}\right)^{1 / 2} d t \leq$ $\leq 4 R\left(x_{0}\right) K_{0}^{2}\|a\|_{L^{\infty}(\Omega)}\|h\|_{\left(L^{\infty}(\Omega)\right)^{n}}^{2} E(s)+\frac{1}{2 R\left(x_{0}\right)} \int_{s}^{T} E(t) d t$.
Taking in consideration that

$$
\sum_{k=1}^{n}\left|\frac{\partial u}{\partial x_{k}}\right| \leq n|\nabla u|
$$

and $a(x) \geq a_{0}>0$ in $\widehat{\omega}$, we have:

$$
2 \int_{\widehat{\omega} \times(s, T)} M\left(|\nabla u|^{2}\right) \nabla u \cdot \nabla h_{k} \frac{\partial u}{\partial x_{k}} d x d t \leq 2\left\|\nabla h_{k}\right\|_{L^{\infty}(\Omega)} n \int_{\widehat{\omega} \times(s, T)} M\left(|\nabla u|^{2}\right)|\nabla u|^{2} d x d t
$$

and

$$
\int_{\widehat{\omega} \times(s, T)}\left|u^{\prime}\right|^{2} d x d t \leq \frac{1}{a_{0}} \int_{\widehat{\omega} \times(s, T)} a(x)\left|u^{\prime}\right|^{2} d x d t \leq \frac{1}{a_{0}} \int_{s}^{T}\left|E^{\prime}(t)\right| d t \leq \frac{1}{a_{0}} E(s) .
$$

By the construction of h follows

$$
\begin{equation*}
\int_{\Sigma_{s}\left(x_{0}\right)}|\Delta u|^{2} d \Sigma=\int_{\Sigma_{s}\left(x_{0}\right)}(h(x) \cdot v(x))|\Delta u|^{2} d \Sigma \leq \int_{\Sigma_{s}}(h(x) \cdot v(x))|\Delta u|^{2} d \Sigma . \tag{3.17}
\end{equation*}
$$

Multipling (3.16) by $\frac{R\left(x_{0}\right)}{2}$, as a consequence of (3.17) and the estimates above we conclude

$$
\begin{align*}
& \frac{R\left(x_{0}\right)}{2} \int_{\Sigma_{s}\left(x_{0}\right)}|\Delta u|^{2} d \Sigma \leq C_{2} E(s)+C_{3} \int_{\widetilde{\omega} \times(s, T)}|\Delta u|^{2} d x d t+ \\
& +C_{4} \int_{\widetilde{\omega} \times(s, T)} M\left(|\nabla u|^{2}\right)|\nabla u|^{2} d x d t+\frac{1}{4} \int_{s}^{T} E(t) d t \tag{3.18}
\end{align*}
$$

where C_{2}, C_{3} and C_{4} are constants independents of the initial data.

Substituting (3.18) in (3.15) we find

$$
\begin{align*}
& \frac{1}{2} \int_{s}^{T} E(t) d t \leq\left(C_{1}+C_{2}\right) E(s)+C_{3} \int_{\widehat{\omega} \times(s, T)}|\Delta u|^{2} d x d t+ \\
& +C_{4} \int_{\widehat{\omega} \times(s, T)} M\left(|\nabla u|^{2}\right)|\nabla u|^{2} d x d t \leq\left(C_{1}+C_{2}\right) E(s)+ \tag{3.19}\\
& +C_{5}\left(\int_{\widehat{\omega} \times(s, T)} M\left(|\nabla u|^{2}\right)|\nabla u|^{2} d x d t+\int_{\widehat{\omega} \times(s, T)}|\Delta u|^{2} d x d t\right)
\end{align*}
$$

where $C_{5}=\max \left\{C_{3}, C_{4}\right\}$.
Step 3. Estimate of $\int_{\widetilde{\omega} \times(s, T)}^{4}|\Delta u|^{2} d x d t$ and $\int_{\widetilde{\omega} \times(s, T)} M\left(|\nabla u|^{2}\right)|\nabla u|^{2} d x d t$.
We introduce the function η, that satisfies

$$
\eta \in W^{2, \infty}(\Omega), 0 \leq \eta \leq 1, \eta=1 \text { in } \widehat{\omega}, \eta=0 \text { in } \Omega \backslash \omega .
$$

Applying (2.12) with $\xi=\eta^{2}$ we have

$$
\begin{align*}
& \left.\left(u^{\prime}(t), \eta^{2} u(t)\right)\right|_{0} ^{T}-\int_{Q_{s}} \eta^{2}\left(\left|u^{\prime}\right|^{2}-|\Delta u|^{2}\right) d x d t+\int_{Q_{s}} \Delta u \Delta \eta^{2} u d x d t \\
& +2 \int_{Q_{s}} \Delta u\left(\nabla u \cdot \nabla \eta^{2}\right) d x d t+\int_{Q_{s}} M\left(|\nabla u|^{2}\right)|\nabla u|^{2} \eta^{2} d x d t+ \tag{3.20}\\
& +\int_{Q_{s}} M\left(|\nabla u|^{2}\right) \nabla u \cdot \nabla \eta^{2} u d x d t+\int_{Q_{s}} a(x) u^{\prime} \eta^{2} u d x d t=0
\end{align*}
$$

From (3.20) and properties of η follows that

$$
\begin{align*}
& \int_{\widehat{\omega} \times(s, T)} M\left(|\nabla u|^{2}\right)|\nabla u|^{2} d x d t+\int_{\widehat{\omega} \times(s, T)}|\Delta u|^{2} d x d t= \\
& -\left.\left(u^{\prime}(t), \eta^{2} u(t)\right)\right|_{s} ^{T}+\int_{Q_{s}} \eta^{2}\left|u^{\prime}\right|^{2} d x d t- \\
& -2 \int_{Q_{s}} \Delta u\left(\nabla u \cdot \nabla \eta^{2}\right) d x d t-\int_{Q_{s}} \Delta u \Delta \eta^{2} u d x d t- \tag{3.21}\\
& \int_{Q_{s}} M\left(|\nabla u|^{2}\right) \nabla u \cdot \nabla \eta^{2} u d x d t-\int_{Q_{s}} a(x) u^{\prime} \eta^{2} u d x d t
\end{align*}
$$

Now, observe that,

- $2 \int_{Q_{s}} \Delta u\left(\nabla u \cdot \nabla \eta^{2}\right) d x d t \leq \frac{1}{4} \int_{\widetilde{\omega} \times(s, T)}|\Delta u|^{2} d x d t+4\left\|\nabla \eta^{2}\right\|_{\infty}^{2} \int_{\widetilde{\omega} \times(s, T)}|\nabla u|^{2} d x d t$
- $\int_{Q_{s}} \Delta u \Delta \eta^{2} u d x d t \leq\left\|\Delta \eta^{2}\right\|_{\infty}^{2} \int_{\widehat{\omega} \times(s, T)}|u|^{2} d x d t+\frac{1}{4} \int_{\widehat{\omega} \times(s, T)}|\Delta u|^{2} d x d t \leq$
$\leq \frac{1}{m_{0}}\left\|\Delta \eta^{2}\right\|_{\infty}^{2} \int_{\widetilde{\omega} \times(s, T)} M\left(|\nabla u|^{2}\right)|u|^{2} d x d t+\frac{1}{4} \int_{\widehat{\omega} \times(s, T)}|\Delta u|^{2} d x d t$
- $\int_{Q_{s}} M\left(|\nabla u|^{2}\right) \nabla u \cdot \nabla \eta^{2} u d x d t \leq \frac{1}{2} \int_{\widehat{\omega} \times(s, T)} M\left(|\nabla u|^{2}\right)|\nabla u|^{2} d x d t+$
$+\frac{\left\|\nabla \eta^{2}\right\|_{\infty}^{2}}{2} \int_{\widehat{\omega} \times(s, T)} M\left(|\nabla u|^{2}\right)|u|^{2} d x d t$.
- $\int_{Q_{s}} a(x) u^{\prime} \eta^{2} u d x d t \leq \int_{s}^{T} \sqrt{\|a\|_{\infty}}\left|E^{\prime}(t)\right|^{1 / 2} K_{1}|\Delta u(t)| d t \leq$
$\leq 4\|a\|_{\infty} K_{1}^{2} C_{5} E(s)+\frac{1}{8 C_{5}} \int_{s}^{T} E(t) d t$, where K_{1} is the immersion's constant of the $H_{0}^{2}(\Omega) \hookrightarrow L^{2}(\Omega)$.
- $\int_{Q_{s}} \eta^{2}\left|u^{\prime}\right|^{2} d x d t \leq \frac{1}{a_{0}} \int_{Q_{s}} \eta^{2} a(x)\left|u^{\prime}\right|^{2} d x d t \leq \frac{1}{a_{0}} E(s)$.
- $\left.\left(u^{\prime}(t), \eta^{2} u(t)\right)\right|_{s} ^{T} \leq 2 K_{2} E(s)$, where $K_{2}=\max \left\{1, K_{1}^{2}\right\}$.

Using the estimates above in (3.21) we obtain

$$
\begin{align*}
& \frac{C_{5}}{2}\left(\int_{\widehat{\omega} \times(s, T)} M\left(|\nabla u|^{2}\right)|\nabla u|^{2} d x d t+\int_{\widetilde{\omega} \times(s, T)}|\Delta u|^{2} d x d t\right) \leq \\
& \leq\left(4 K_{1}^{2} C_{5}\|a\|_{\infty}+\frac{C_{5}}{a_{0}}+2 C_{5} K_{2}\right) E(s)+ \\
& +4 C_{5}\left\|\nabla \eta^{2}\right\|_{\infty}^{2} \int_{\widetilde{\omega} \times(s, T)}|\nabla u|^{2} d x d t+\left(\frac{C_{5}}{m_{0}}\left\|\Delta \eta^{2}\right\|_{\infty}^{2}+\frac{C_{5}}{2}\left\|\nabla \eta^{2}\right\|_{\infty}^{2}\right) \int_{\widetilde{\omega} \times(s, T)} M\left(|\nabla u|^{2}\right)|u|^{2} d x d t+ \tag{3.22}\\
& +\frac{1}{8} \int_{s}^{T} E(t) d t
\end{align*}
$$

Substituting (3.22) in (3.19) we find

$$
\begin{align*}
& \int_{s}^{T} E(t) d t \leq C_{6} E(s)+C_{7} \int_{\widehat{\omega} \times(s, T)} M\left(|\nabla u|^{2}\right)|u|^{2} d x d t+C_{8} \int_{\widetilde{\omega} \times(s, T)}|\nabla u|^{2} d x d t \leq \tag{3.23}\\
& \quad \leq C_{6} E(s)+C_{7} \int_{\widetilde{\omega} \times(s, T)} a(x) M\left(|\nabla u|^{2}\right)|u|^{2} d x d t+C_{8} \int_{\widetilde{\omega} \times(s, T)} a(x)|\nabla u|^{2} d x d t
\end{align*}
$$

because $a(x) \geq a_{0}>0$ in $\omega \supset \widehat{\omega}$.
Let us consider a special multiplier to absorb the terms of the right side of (3.23). We introduce $z(t) \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$ solution of the problems

$$
\left\lvert\, \begin{align*}
& -\Delta z=a(x) u \text { in } \Omega \tag{3.24}\\
& z=0 \text { on } \Gamma
\end{align*}\right.
$$

and

$$
\left\lvert\, \begin{gather*}
-\Delta z^{\prime}=a(x) u^{\prime} \text { in } \Omega \tag{3.25}\\
z^{\prime}=0 \text { on } \Gamma .
\end{gather*}\right.
$$

Elementary calculations show that

$$
\begin{gather*}
\int_{\Omega}|\nabla z|^{2} d x \leq C \int_{\Omega}|u|^{2} d x \tag{3.26}\\
\int_{\Omega}\left|\nabla z^{\prime}\right|^{2} d x \leq C \int_{\Omega} a(x)\left|u^{\prime}\right|^{2} d x
\end{gather*}
$$

Multiplying the equation in (1.1) by z and integrating by parts on Q_{s} we find

$$
\begin{equation*}
\int_{Q_{s}} u^{\prime \prime} z d x d t+\int_{Q_{s}} \Delta u \Delta z d x d t-\int_{Q_{s}} M\left(|\nabla u|^{2}\right) u \Delta z d x d t+\int_{Q_{s}} a(x) u^{\prime} z d x d t=0 . \tag{3.27}
\end{equation*}
$$

Now from (3.24) we obtain

$$
\begin{align*}
& -\int_{Q_{s}} M\left(|\nabla u|^{2}\right) \Delta z u d x d t=\int_{Q_{s}} a(x) M\left(|\nabla u|^{2}\right)|u|^{2} d x d t \\
& \int_{Q_{s}} \Delta z \Delta u d x d t=-\int_{Q_{s}} \Delta u a(x) u d x d t=\int_{Q_{s}} \nabla u \nabla(a(x) u) d x d t \leq \tag{3.28}\\
& \leq C \int_{Q_{s}} a(x)|\nabla u|^{2} d x d t
\end{align*}
$$

Substituting (3.28) in (3.27) we conclude that

$$
\int_{Q_{s}} a(x) M\left(|\nabla u|^{2}\right)|u|^{2} d x d t+\int_{Q_{s}} a(x)|\nabla u|^{2} d x d t \leq-\left.\int_{\Omega} u^{\prime} z d x\right|_{s} ^{T}+\int_{Q_{s}} u^{\prime} z^{\prime} d x d t-\int_{Q_{s}} a(x) u^{\prime} z d x d t
$$

From Poincaré's Inequality and (3.26) we get

$$
\begin{aligned}
& \left|-\int_{\Omega} u^{\prime} z d x\right| \leq \frac{1}{2} \int_{\Omega}\left|u^{\prime}\right|^{2} d x+\frac{K_{0}}{2} \int_{\Omega}|\nabla z|^{2} d x \leq \\
& \leq \frac{1}{2} \int_{\Omega}\left|u^{\prime}\right|^{2} d x+\frac{K_{0} C}{2} \int_{\Omega}|u|^{2} d x \leq \\
& \leq \frac{1}{2} \int_{\Omega}\left|u^{\prime}\right|^{2} d x+\frac{K_{0} K_{1} C}{2} \int_{\Omega}|\Delta u|^{2} d x \leq C_{9} E(t)
\end{aligned}
$$

Therefore,

$$
-\left.\int_{\Omega} u^{\prime} z d x\right|_{s} ^{T} \leq 2 C_{9} E(s)
$$

Using (3.24), (3.26) and the immersion of $H_{0}^{2}(\Omega) \hookrightarrow L^{2}(\Omega)$ we have

$$
\begin{aligned}
& \int_{Q_{s}} a(x) u^{\prime} z d x d t=\int_{s}^{T}\left\{\left(\int_{\Omega} a(x)^{2}\left|u^{\prime}\right|^{2} d x\right)^{1 / 2}\left(\int_{\Omega}|z|^{2} d x\right)^{1 / 2}\right\} d t \leq \\
& \leq C\|a\|_{\infty}^{1 / 2} \int_{s}^{T} \frac{1}{\varepsilon}\left|E^{\prime}(t)\right|^{1 / 2} \cdot \varepsilon E(t)^{1 / 2} d t \leq \\
& \leq \frac{C\|a\|_{\infty}}{\varepsilon} \int_{s}^{T}\left|E^{\prime}(t)\right| d t+\frac{\varepsilon}{2} \int_{s}^{T} E(t) d t
\end{aligned}
$$

From (3.26) follows that

$$
\begin{aligned}
& \int_{Q_{s}} u^{\prime} z^{\prime} d x d t \leq \frac{\varepsilon}{4} \int_{s}^{T} \int_{\Omega}\left|u^{\prime}\right|^{2} d x d t+\frac{1}{\varepsilon} \int_{s}^{T} \int_{\Omega}\left|z^{\prime}\right|^{2} d x d t \leq \\
& \leq \frac{\varepsilon}{2} \int_{s}^{T} E(t) d t+\frac{C K_{1}}{\varepsilon} \int_{s}^{T} \int_{\Omega} a(x)\left|u^{\prime}\right|^{2} d x d t \leq \\
& \leq \frac{\varepsilon}{2} \int_{s}^{T} E(t) d t+\frac{C K_{1}}{\varepsilon} \int_{s}^{T}\left|E^{\prime}(t)\right| d t \leq \frac{\varepsilon}{2} \int_{s}^{T} E(t) d t+C_{10} E(s)
\end{aligned}
$$

Substituting the estimates above in (3.29) and backing in (3.23) follows that

$$
\begin{equation*}
(1-\varepsilon) \int_{s}^{T} E(t) d t \leq C_{11} E(s) \tag{3.30}
\end{equation*}
$$

Choosing $0<\varepsilon<1$ and taking the limit when $T \rightarrow+\infty$ we obtain the estimate (2.9) and this concludes the proof.

References

[1] Ball J. M., Inincial-boundary value problems for an extensible beam, J. math. Analysis Applic. 42 (1973), 61-90.
[2] Ball, J. M., Stability theory for an extensible beam, Journal of Differential Equations 14 (1973), 399-418.
[3] Biler P., Remark on the decay for damped string and beam equations, Nonlinear Analysis 10 (1986), 839-842.
[4] Brito, E. H., Decay Estimates for generalized damped extensible string and beam equation, Nonlinear Analysis 8 (1984), 1489-1496.
[5] Charão, R. C., Bisognin, E., Bisognin, V, Pazoto, A. F., Asymptotic behavior of a Bernoulli-Euler type equation with nonlinear localized damping, Progress in Nonlinear Diff. Equations and Their Applications 66 (2005), 67-91.
[6] Pereira, D. C., Existence, Uniqueness and Asymptotic Behavior for solutions of the Nonlinear Beam Equation, Nonlinear Analysis vol. $14 \mathrm{n}^{0} 8$ (1990), 113-123.
[7] Haraux, H., Oscillations forcées pour certains systemes dissipatifs nonlinéaries, Publications du Laboratoire d'Analyse Numerique. No 78010 Université Pierre et Marie Curie, Paris, (1978).
[8] Haraux, H., Semi-groupes linéaires equations d'évolution linéaires périodiques, Publications $d u$ Laboratoire d'Analyse Numerique. No 78011 Université Pierre et Marie Curie, Paris, (1978).
[9] Kim, J. U., exact semi-internal controllability of an Euler-Bernoulli equation, SIAM Journal on Control and Optimization 30 (1992), 1001-1023.
[10] Komornik, V., Controllability and Stabilization.The Multiplier Method, Masson, Paris,(1994).
[11] Lions, J. L., Controlabilité exact, perturbations et stabilization des systemes distribués, Dunod and Gauthier Villars, Paris, (1969).
[12] Martinez P., A new method to obtain decay estimates for dissipative systems with localized damping, Revista Matematica Complutense 12 (1) (1999), 251-283.
[13] Medeiros, L. A., On a new class of nonlinear wave equations, J. math. Applic. 69 (1979), 252-262.
[14] Nakao, M., Decay of solutions of the wave equation with a local nonlinear dissipation, Math. Ann. 305 (3) (1996), 403-417.
[15] Nayfeh, A. H., Mook, D. T., Nonlinear Oscilations, Willy Interscience, New York, (1979).
[16] Tucsnak, M., Stabilization for a Nonlinear Bernoulli-Euler Equation with Localized Damping, Mathematical Methods in the Applied Sciences 19 n $^{0} 11$ (1996), 897-907.
[17] Tcheugoué Tébou, L. R., Stabilization of the Wave Equation with Localized Nonlinear Damping, Journal of Differential Equations 145 (1998), 502-524.
[18] Vasconcelos, C. F., Teixeira, L. M., Existence, Uniqueness and stabilization for a nonlinear plate system with nonlinear damping, Annales de la Faculté des Sciences de Toulouse vol. VIII, n ${ }^{0}$ 1, (1999) 173-193.
[19] Zuazua, E., Exponential decay for the semilinear wave equation with locally distribuited damping, Comm. Partial Differential Equations 15 (1990), 205-235.
[20] Woinowsky, W., Krieger, The effect of Axial Force on the Vibration of Higed Bars, J. Appl. Mech. 17 (1950), 35-36.

[^0]: *Key words: Beam Equation, Localized Damping, Exponencial Decay
 ${ }^{\dagger}$ Departamento de Análise Matemática, IME/UERJ, crippa@im.ufrj.br
 ${ }^{\ddagger}$ Departamento de Matemática e Estatística, UNIRIO, gladson.antunes@uniriotec.br

