
Parallel Implementation of

Numerical Algorithms for PDE’s∗

felipe bottega Diniz† carlos a. de moura‡

Abstract

Our goal is to illustrate, through a quite simple example, the use of

parallel computing for evolution linear partial differential equations. We

consider the constant coefficient one-dimensional heat conduction model

for a homogeneous bar. Approximations to the solution for the mixed

initial and boundary-value problem are computed with sequential and

parallel implementations of the same algorithm. The obtained results are

then compared.

Resumo

Nosso objetivo é ilustrar, por meio de um exemplo, a utilização da

computação em paralelo para equações diferenciais parciais lineares de

evolução. Consideramos um modelo linear para a condução de calor sobre

uma barra unidimensional de material homogêneo. Aproximações para a

solução do problema misto associado – condições iniciais e de contorno

– são obtidas com implementações sequencial e em paralelo do mesmo

algoritmo. Os resultados são comparados.

1 Introduction

Nowadays in nearly all science and technology areas, to treat data and ana-

lyze phenomena described by a mathematical model, the use of computers is a

strong need. The most detailed the models are, more computational workload

is required.

Numerical calculations performance is strongly linked to the arithmetics proces-

sors. Despite being able to perform calculations quickly, they are bounded by

physical constraints. And these constraints lead to bounds for the calculation

∗Palavras chave: Computação Cient́ıfica, EDP, Análise Numérica, Algoritmo de Diferenças

Finitas, Processamento em Paralelo; Projeto de Iniciação Cient́ıfica de 2011, apresentado

resumidamente como poster nos eventos UERJ sem Muros e X Semana do IME
†Aluno de Iniciação Cient́ıfica, Bolsista do CNPq, Departamento de Matemática Aplicada,

IME/UERJ,

felipebottega@gmail.com
‡Departamento de Matemática Aplicada, IME/UERJ, demoura@ime.uerj.br

99



F.B. Diniz, C.A. de Moura Parallel Implementation of Numerical Algorithms 100

speed. This also represents a limitation for the models, as it makes no sense to

create very high precision models, as long as they are bound to a slow computer

treatment. In the late 80’s, the work reported in [4] showed the viability of a

different approach to handle this difficulty – Parallel Computing. This can be

described in a quite simple way: just make use of several processors working

together, sharing the whole task.

2 The physical problem

Consider heat conduction in a one-dimensional homogeneous bar. Suppose that

the bar two extreme points are kept at 0o C temperature (boundary conditions)

and that the bar lays on the x axis, in such a way that one of its end points

remains at the origin. Denote by x the coordinate of a (material) point of the

bar and further assume that the bar length is L. The temperature of each

bar point at a given instant is also known, these values being called the initial

condition. To model the temperature evolution we take the equation

αuxx = ut , (1)

where t denotes time and u(x, t) is the temperature at instant t of the point on

position x. The figure below shows the details.

Let the initial condition be

u(x, 0) = f(x), 0 < x < L ,

while the boundary conditions were assumed to be

u(0, t) = 0, t > 0 ,

u(L, t) = 0, t > 0 .

Thus the problem to be solved is the following:

Which is the state of the bar temperature1 at any fixed

instant T > 0?

1By the state of the bar temperature at time T we mean the temperature value for each

bar point at the instant T .



F.B. Diniz, C.A. de Moura Parallel Implementation of Numerical Algorithms 101

3 The approximation algorithm

First, we split the bar in r equal parts, each with size equal to ∆x. We also

split the time interval from 0 to T in s equal parts of size ∆t.

By making use of the Taylor series development for the function u(x, t) we reach

the two following identities:

ut =
u(x, t+∆t)− u(x, t)

∆t
+O(∆t) ,

uxx =
u(x−∆x, t)− 2u(x, t) + u(x+∆x, t)

∆x2
+O(∆x2) .

By replacing these identities in (1) we obtain

α
u(x−∆x, t)− 2u(x, t) + u(x+∆x, t)

∆x2
+O(∆x2) =

u(x, t+∆t)− u(x, t)

∆t
+O(∆t) .

Denote j ·∆x = xj and n ·∆t = tn, so that [xj−1, xj ], for (j = 1 . . . r), is the

jth piece of the bar and [tn−1, tn], for (n = 0 . . . s), is the nth temporal step.

Now let λ = α ·∆t/∆x2, so that the above identity may be rewritten as:

u(xj , tn+1) = λ
(
u(xj−1, tn)− 2u(xj , tn) + u(xj+1, tn)

)
+ ε ,

where ε = O(∆x2) + O(∆t) is the error associated to the replacement of the

above derivatives by the corresponding quotient differences. If the discretizing

parameters ∆x and ∆t are taken small enough, hopefully this error is small. The

above mentioned replacement corresponds to neglecting the error, and with this

procedure we no longer will calculate the exact values for the solution u(xj , tn)

but an approximation to it, which will be denoted U(xj , tn). To simplify the

notation, make U(xj , tn) = Un
j . This way we are led to

Un+1
j = λUn

j−1 + (1− 2λ)Un
j + λUn

j+1 .

This relation allows us to calculate the bar temperature in xj at the (n +

1)th temporal step through three other bar points temperature values at the

nth temporal step. Thus a recursive algorithm was defined. The figure below

illustrates the process.



F.B. Diniz, C.A. de Moura Parallel Implementation of Numerical Algorithms 102

To find out the bar state at the (n+1)th temporal step we need to calculate

the values of

Un+1
0 , Un+1

1 , . . . , Un+1
r .

As the values of Un+1
0 and Un+1

r are known (boundary conditions), it suffices

to calculate the values of Un+1
1 , Un+1

2 , . . . , Un+1
r−1 . Thus, we have a system of

r− 1 equations to compute. This system can be written in the form of a matrix

equation, as shown below.



Un+1
1

Un+1
2

...

...

Un+1
r−2

Un+1
r−1


=



1− 2λ λ 0 0 0 . . . 0

λ 1− 2λ λ 0 0 . . . 0

0 λ 1− 2λ λ 0 . . . 0
...

. . .
. . .

...

0 . . . λ 1− 2λ λ . . . 0
...

. . .
...

0 0 . . . 0 λ 1− 2λ λ

0 0 0 . . . 0 λ 1− 2λ





Un
1

Un
2

...

...

Un
r−2

Un
r−1



We denote the vector at left by Un+1 (state of the bar at t = tn+1), the coeffi-

cient matrix by Sn and the vector at right by Un (state of the bar in t = tn).



F.B. Diniz, C.A. de Moura Parallel Implementation of Numerical Algorithms 103

Thus the equation above can be written in the compact form as

Un+1 = SnUn .

Note that Un can be written in terms of Un−1, Un−1 can be written in terms

of Un−2, so that we can continue until we reach U0. This means that for any

value of n+ 1, we can compute Un+1 if U0 is known:

Un+1 = SnUn = Sn
(
Sn−1Un−1

)
= . . . =

(
SnSn−1 . . . S1S0

)
U0 . (3.1)

This is the alternate way to use the semi-group property of evolution differential

equations, as suggested in [3]. Despite of requiring a greater amount of calcula-

tions it is amenable to a parallel implementation.

To guarantee the scheme convergence, which means that the approximations

hereby defined approach indeed the true solution, the CFL Condition (Courant-

Friedrichs-Lewy)2 must hold. For this scheme, this condition states that λ =

α∆x/(∆t)2 ≤ 1
2 . To have it fulfilled we must choose ∆t very small, as compared

to ∆x , and this leads to a large value for N , which by its turn forces too many

calculations.

4 Matrix Multiplications

To get the product SnSn−1 . . . S1S0 in (3.1) we will use Strassen algorithm,

which requires matrices whose order must be a power of 2. As the coefficients

matrices order is (r − 1)X(r − 1), the bar must be split in r = 2p + 1 (p is

a natural) parts. Strassen algorithm requires fewer multiplications than the

traditional matrix multiply algorithm. Indeed, given a square matrix of order

2p, the number of multiplications in the traditional algorithm is O((2p)3) while

Strassen algorithm asymptotically requires O((2p)2.807). Nevertheless, Strassen

algorithm requires a larger amount of sums3 than the traditional algorithm. On

acount of this, Strassen algorithm becomes more efficient only for matrices of

high order. For further details about Strassen algorithm, consult [2].

The chart below shows the performance of traditional and Strassen algorithms

for matrix multiplications4.

2More information about this condition can be seen in [1].
3Processors calculate sums way faster than multiplications.
4All tests in this article were performed with LNCC’s (Laboratório Nacional de Com-

putação Cient́ıfica) Sunhpc cluster. Each machine has the following specification: Sun Blade



F.B. Diniz, C.A. de Moura Parallel Implementation of Numerical Algorithms 104

For matrix with order not exceeding 1024, the traditional algorithm is more

effective. As the order gets to 2048, Strassen algorithm fairs better and this

improvement becomes stronger as matrices orders increase. In addition, the

Strassen algorithm allows a high level of parallelism, which plainly justifies its

employment for this problem.

5 Parallelism

Strassen algorithm runs as follows to get C as the product of two even order

square matrices A and B . First split the matrices in 4 square blocks with the

same order:

(
C11 C12

C21 C22

)
=

(
A11 A12

A21 A22

)(
B11 B12

B21 B22

)

x6250 Model, 2 Processors Intel Xeon E5440 Quad Core, giving 8 cores, and 16 GB PC2-5300

DDR2 memory



F.B. Diniz, C.A. de Moura Parallel Implementation of Numerical Algorithms 105

Instead of straightly performing the block multiplications on the right hand

side, the calculation effort is lowered, as we carry only the 7 block multiplica-

tions that follows:

P1 = (A11 +A22)(B11 +B22) P2 = (A21 +A22)B11

P3 = A11(B12 −B22) P4 = A22(B21 −B11)

P5 = (A11 +A12)B22 P6 = (A21 −A11)(B11 +B12)

P7 = (A12 −A22)(B21 +B22)

The blocks in C are then obtained from the matrices Pi through additions, as

shown below:

C11 = P1 + P4 − P5 + P7

C12 = P3 + P5

C21 = P2 + P4

C22 = P1 + P3 − P2 + P6

Note that each Pi is defined as a product of sub-blocks from A and B – more

precisely, linear combinations of these blocks –, and this implies that we can use

Strassen algorithm again to calculate each one of these products, until we reach

4X4 matrices.

For the parallelization of this algorithm, we used 8 processors, 7 of them for com-

puting each Pi and one to administrate and calculate the combinations between

the Pi. The diagram below illustrates the process5.

5We used C/C++ Programming Language and MPI (Message Passing Interface) library

for parallelization.



F.B. Diniz, C.A. de Moura Parallel Implementation of Numerical Algorithms 106

6 Computer results

Several tests for the linear homogeneous material heat conduction problem were

computed sequentially and in parallel. In all cases the efficiency of the parallel

algorithm was higher as compared to the sequential one.

One of these tests will be presented. Consider a 50 cm long bar, take the

coefficient α = 1, assume that the initial bar temperature is constant equal to

20oC. We want to know the bar temperature state for 20s, 50s, 150s and 300s.

The above described algorithm generated the chart below which exhibits the

sought data.



F.B. Diniz, C.A. de Moura Parallel Implementation of Numerical Algorithms 107

We also present a comparison chart between the algorithms, which clearly shows

that the parallel algorithm outperforms the sequential one. As already observed,

this improvement is stronger for matrices of high order. In fact, the higher the

matrix order, the greater the difference in efficiency between the algorithms.

Although the performance difference between the algorithms remains clear from

the graphic above, a more precise comparison is given by the ratio between the

execution time of the parallel algorithm and the sequential. This ratio is called

speed-up. The average speed-up for this test was roughly 7.25, which means

that the parallel algorithm is 7.25 times faster than the sequential one.

We recall that Amdhal Law relates the speed-up and the effective use of each

processor in the parallel algorithm:

speed-up =
1

(1− P ) + P/M
,



F.B. Diniz, C.A. de Moura Parallel Implementation of Numerical Algorithms 108

P: Percentage of Parallelization,

M: Quantity of Processors.

As we are using 8 processors and the speed-up is 7.25, Amdhal Law allows

us to obtain the percentage of parallelization. Since the sequential part of the

algorithm is relatively small, we conclude that the percentage of paralleliza-

tion is 98%, which means that each processor was used close to its maximum

performance.

7 Conclusion

Computational treatment for many mathematical models may become unfeasi-

ble with sequential algorithms, while parallel computing may lead to a break-

through as regards to processing time.

The simple example hereby presented shows some points sought in parallel com-

puting research.

An area with many open problems, parallel computing is currently being used

for heavy computations in economic models, in meteorology forecasts, in engi-

neering simulations, in biology and medical modeling, among other applications.

Acknowledgements

The authors gratefully acknowledge the financial support6 of CAPES and FAPERJ

(Grant Proc. 23038.000611/2010-14).

References

[1] COURANT, R.; FRIEDRICHS, K.; LEWY, H.: On the Partial Differ-

ence Equations of Mathematical Physics, IBM Journal of Research and

Development, 11, 215–234, Mar. 1967; Original in German: Über die par-

tiellen Differenzengleichungen der mathematischen Physik, Mathematische

Annalen, 100(1), 32–74, 1928.

6Cooperação entre as Pós-Graduações em Modelagem Computacional e Ciências Com-

putacionais LNCC/UERJ – FAPERJ 12/2009



F.B. Diniz, C.A. de Moura Parallel Implementation of Numerical Algorithms 109

[2] CORMEN, T.H.; LEISERSON, C.E.; RIVEST, R.L.; STEIN, C.: Intro-

duction to Algorithms, MIT Press, Boston, Third Edition, 2001.

[3] MOURA, CARLOS A. de; CASTRO, M. CLICIA S. de; CASTRO,

VINICIUS B. de: A strategy for parallel implementation of finite

difference numerical schemes associated to evolution differential equa-

tions. Proc. Appl. Math. & Mechanics, 7, 2020013-2020014, 2007, DOI:

10.1002/pamm.200700084. Presented at: ICIAM-07 International Confer-

ence on Industrial and Applied Mathematics, Zurich.

[4] GUSTAFSON, J.L.; MONTRY, G.R.: Development of Parallel Methods

for a 1024-processor Hypercube, SIAM Jour. Sc. Stat. Computing, 9(4),

609–638, Jul. 1988.



F.B. Diniz, C.A. de Moura Parallel Implementation of Numerical Algorithms 110


