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Abstract

The exactness of certain diagrams of linear mappings between vector spaces of formal series (resp.

continuous polynomials) is established.

A fundamental result of Linear Algebra([4], Chap.III, §2, Proposition 2.1) asserts that exact sequences

of linear mappings between modules give raise to exact sequences of group homomorphisms between

additive groups of linear mappings. In the same vein, it was shown in Theorem IV.4 of [7] that exact

diagrams (in the sense of Grothendieck) of linear mappings between modules give raise to exact diagrams

of linear mappings between modules of lois polynomes. The main purpose of this paper is to establish

a continuous version of the last mentioned result. More precisely, we shall prove that the exactness of

certain diagrams of continuous linear mappings between topological vector spaces implies the exactness

of certain diagrams of linear mappings between vector spaces of formal series and the exactness of certain

diagrams of linear mappings between vector spaces of continuous polynomials.

Let us begin with some preliminaries.

Definition 1 [2],[3] A diagram

A
f1−→−→
f2

B
g−→ C ( resp. A

f−→ B
g1−→−→
g2

C )

of mappings between sets is said to be exact if g is surjective and if for each y1, y2 ∈ B the following

conditions are equivalent:

g(y1) = g(y2); there exists an x ∈ A such that y1 = f1(x) and y2 = f2(x)

(resp. f is a bijection from A onto the set {y ∈ B ; g1(y) = g2(y)} ).

Throughout this paper IK shall denote a separated non-discrete topological field of char-

acteristic zero.

Example 2 Let E,F and G be three topological vector spaces over IK, and let α : E −→ F and

w : F −→ G be continuous linear mappings. Consider E × F endowed with the product topology and

define u, v : E × F −→ F by u(x, y) = y and v(x, y) = α(x) + y (u and v are continuous linear

mappings). If the sequence

0 −→ E
α−→ F

w−→ G −→ 0

is exact, then it is easily verified that the diagram
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E × F
u−→−→
v

F
w−→ G

is exact.

In particular, let E be a topological vector space over IK, M a vector subspace of E and π : E −→ E/M

the canonical surjection. Consider M endowed with the induced topology, M × E endowed with the

product topo-logy and E/M endowed with the quotient topology. Then the diagram (of continuous linear

mappings)

M × E
u−→−→
v

E
π−→ E/M

is exact, where u(x, y) = y and v(x, y) = x + y for (x, y) ∈ M × E. Moreover, π is open.

Definition 3 [6] Let m be a positive integer, and let E and F be two topological vector spaces over IK.

A mapping P : E −→ F is said to be an m-homogeneous polynomial if there exists a symmetric m-linear

mapping A : Em −→ F such that P (x) = A (x, . . . , x︸ ︷︷ ︸)

m times

for all x ∈ E. We shall write P =Â to indicate

that P corresponds to A in this way.

The following fundamental “Polarization Formula” is well-known [1]:

If A : Em −→ F is a symmetric m-linear mapping, then

A(x1, . . . , xm) =
1

(m!)e

∑
ε1,...,εm∈{0,1}

(−e)m−(ε1+...+εm) Â((ε1e)x1 + . . . + (εme)xm)

for all (x1, . . . , xm) ∈ E1 × . . .× Em, where e is the identity element of IK.

It follows from this formula that for each m-homogeneous polynomial P :E −→ F there exists a

unique symmetric m-linear mapping A : Em −→ F such that Â=P.

The next result is an immediate consequence of Theorem 41 of [1].

Proposition 4 Let E and F be two topological vector spaces over IK, P : E −→ F an m-

homogeneous polynomial and A : Em −→ F the symmetric m-linear mapping such that P=Â. Then the

following conditions are equivalent:

(a) P is continuous;

(b) P is continuous at 0 ∈ E;

(c) A is continuous;

(d) A is continuous at (0, . . . , 0) ∈ Em.

We shall denote by Lm(E,F ) the vector space over IK of all continuous m-homogeneous polynomials

from E into F , and we shall define L0(E,F ) = F.
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Definition 5 [6] Given two topological vector spaces E and F over IK, the product vector space∏
m∈IN

Lm(E,F )

shall be represented by F [[E]]; an element of F [[E]] is called a formal series from E into F . The vector

subspace
⊕

m∈IN
Lm(E,F ) of F [[E]] shall be represented by F [E]; an element of F [E] is called a continuous

polynomial from E into F .

Let E and F be two topological vector spaces over IK and u : E −→ F a continuous linear mapping.

For each topological vector space H over IK, let uH be the linear mapping from H [[F ]] into H [[E]] given

by

uH ((Pm)m∈IN ) = (Pm ◦ u)m∈IN

( if P0 = z ∈ L0(F,H), P0 ◦u means z). Obviously, uH |(H[F ]) is a linear mapping from H[F ] into H[E].

We can now state our main result:

Theorem 6 Let E,F and G be three topological vector spaces over IK, and let u, v : E −→ F and

w : F −→ G be continuous linear mappings. Assume that the diagram

E
u−→−→
v

F
w−→ G

is exact and that w is an open mapping. Then, for each topological vector space H over IK, the diagrams

H[[G]] wH−→ H[[F ]]
uH−→−→
vH

H[[E]]

and

H[G]
wH |(H[G])−→ H[F ]

uH |(H[F ])−→−→
vH |(H[F ])

H[E]

are exact.

Proof. Let us prove the first assertion. Indeed, let H be an arbitrary topological vector space over

IK. We claim that wH is injective. In fact, let (Pm)m∈IN ∈ H[[G]] be such that wH((Pm)m∈IN ) =

(Pm ◦w)m∈IN = 0. Then P0 = 0 and the surjectivity of w implies that Pm = 0 for all positive integer m.

Thus wH is injective.

Now, we claim that

Im(wH) = {(Qm)m∈IN ∈ H[[F ]]; uH((Qm)m∈IN ) = vH((Qm)m∈IN )} .

In fact, let (Qm)m∈IN ∈ Im(wH). Then there exists a (Pm)m∈IN ∈ H[[G]] such that Pm ◦w = Qm for all

m ∈ IN . But, since w ◦ u = w ◦ v, then

Qm ◦ u = (Pm ◦ w) ◦ u = Pm ◦ (w ◦ u) = Pm ◦ (w ◦ v) = (Pm ◦ w) ◦ v = Qm ◦ v
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for all m ∈ IN . Therefore uH((Qm)m∈IN ) = vH((Qm)m∈IN ).

In order to prove the other inclusion, let us first verify that if m is a positive integer and Q ∈ Lm(F,H)

is such that Q◦u = Q◦v, then there exists a P ∈ Lm(G, H) such that P ◦w = Q. In fact, let B : Fm −→ H

be the continuous symmetric m-linear mapping such that B̂ = Q (Proposition 4). If z1, . . . , zm ∈ G are

arbitrary, let y1, y
′
1, . . . , ym, y′m ∈ F be such that w(yi) = w(y′i) = zi for i = 1, . . . ,m. By hypothesis,

for each i = 1, . . . ,m there exists an xi ∈ E such that u(xi) = yi and v(xi) = y′i. Consequently, if

ε1, . . . , εm ∈ {0, 1},

Q( (ε1e)y1 + . . . + (εme)ym ) = Q( (ε1e)u(x1) + . . . + (εme)u(xm) )

= Q( u((ε1e)x1 + . . . + (εme)xm) ) = (Q ◦ u)( (ε1e)x1 + . . . + (εme)xm )

= (Q ◦ v)( (ε1e)x1 + . . . + (εme)xm ) = Q( v((ε1e)x1 + . . . + (εme)xm) )

= Q ( (ε1e)v(x1) + . . . + (εme)v(xm) ) = Q ( (ε1e)y′1 + . . . + (εme)y′m ),

and the Polarization Formula furnishes B(y1, . . . , ym) = B(y′1, . . . , y
′
m). Define A : Gm −→ H by

A(z1, . . . , zm) = B(y1, . . . , ym), where yi ∈ F and w(yi) = zi for i = 1, . . . m. By what we have just

seen, A is well-defined, and it is clear that A is a symmetric m-linear mapping. We claim that the m-

homogeneous polynomial P=Â is continuous. Indeed, let W be a neighborhood of 0 in H. By the conti-

nuity of B at (0, . . . , 0) ∈ Fm, there exists a neighborhood V of 0 in F such that B

 
V × . . .× V︸ ︷︷ ︸!

m times

⊂ W .

Since, by hypothesis, w is surjective and open, w(V ) is a neighborhood of 0 in G; and, by the definition

of A, A

 
w(V )× . . .× w(V )︸ ︷︷ ︸!

m times

⊂ W. Thus A is continuous at (0, . . . , 0) ∈ Gm, and hence P ∈ Lm(G, H)

by Proposition 4. Moreover,

(P ◦ w)(y) = P (w(y)) = A(w(y), . . . , w(y)) = B(y, . . . , y) = Q(y)

for all y ∈ F , that is, P ◦ w = Q.

Now, let (Qm)m∈IN ∈ H[[F ]] be such that uH((Qm)m∈IN ) = vH((Qm)m∈IN ). Then Qm ◦ u = Qm ◦ v

for all m ∈ IN , and by what we have just seen for each positive integer m there exists a Pm ∈ Lm(G, H)

such that Pm ◦ w = Qm. Put P0 = Q0. Then wH((Pm)m∈IN ) = (Qm)m∈IN , and the proof of the first

assertion is complete.

Let us prove the second assertion. Firstly, wH |(H[G]) is obviously injective. Let (Qm)m∈IN ∈
Im(wH |(H[G])). Then there exists a (Pm)m∈IN ∈ H[G] such that wH((Pm)m∈IN ) = (Qm)m∈IN . Hence

uH((Qm)m∈IN ) = vH((Qm)m∈IN ) , as we have just verified. Finally, let (Qm)m∈IN ∈ H[F ] be such that

uH((Qm)m∈IN ) = vH((Qm)m∈IN ), and let l be a positive integer such that Qm = 0 for m ≥ l. As we

have seen in the proof of the first assertion, for each m = 0, . . . , l − 1 there is a Pm ∈ Lm(G, H) such

that Pm ◦ w = Qm. Define (Rm)m∈IN ∈ H[G] by Rm = Pm for m = 0, . . . , l − 1 and Rm = 0 for m ≥ l.

Then wH((Rm)m∈IN ) = (Qm)m∈IN . This completes the proof of the theorem.
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The next example shows that the condition that w is open is essential for the validity of Theorem 6.

Example 7 Let E be an infinite-dimensional normed space over IR or IC, G the vector space E endowed

with the weak topology σ(E,E′) and 1E the identity mapping of E. Then

E
1E−→−→
1E

E
w−→ G

is an exact diagram of continuous linear mappings, where w = 1E. Moreover, w is not open. On the

other hand, the diagrams

E[[G]] wE−→ E[[E]]
(1E)E−→−→
(1E)E

E[[E]]

and

E[G]
wE |(E[G])−→ E[E]

(1E)E |(E[E])−→−→
(1E)E |(E[E])

E[E]

are not exact. In fact, if (Qm)m∈IN is the element of E[E] given by Qm = 0 for m 6= 1 and Q1 = 1E :

E −→ E, then the only mapping P1 : E −→ E satisfying P1 ◦ w = Q1 is the identity mapping of E,

which is not continuous as a mapping from G into E.

Corollary 8 Let E be a topological vector space over IK, M a vector subspace of E and π : E −→ E/M

the canonical surjection. Consider M endowed with the induced topology, M×E endowed with the product

topology and E/M endowed with the quotient topology, and let u, v : M × E −→ E be the continuous

linear mappings given by u(x, y) = y and v(x, y) = x + y. Then, for each topological vector space H

over IK, the diagrams

H[[E/M ]] πH−→ H[[E]]
uH−→−→
vH

H[[M × E]]

and

H[E/M ]
πH |(H[E/M ])−→ H[E]

uH |(H[E])−→−→
vH |(H[E])

H[M × E]

are exact.

Proof. In view of Example 2, the corollary is an immediate consequence of Theorem 6.

Corollary 9 Let E, F and G be three topological vector spaces over a non-trivially valued field L

of characteristic zero such that F is metrizable and complete and G is separated and barrelled ([5],

Definition 2.35). Let u, v : E −→ F and w : F −→ G be continuous linear mappings. Assume that the

diagram

E
u−→−→
v

F
w−→ G

is exact. Then, for each topological vector space H over L, the diagrams
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H[[G]] wH−→ H[[F ]]
uH−→−→
vH

H[[E]]

and

H[G]
wH |(H[G])−→ H[F ]

uH |(H[F ])−→−→
vH |(H[F ])

H[E]

are exact.

Proof. By Theorem 2.73 of [5], w is an open mapping. Therefore the corollary follows immediately from

Theorem 6.

Corollary 10 Let F and G be two topological vector spaces over a non-trivially valued field L of character-

istic zero such that F is metrizable and complete and G is separated and barrelled, and let w : F −→ G

be a continuous surjective linear mapping. Consider Ker(w) endowed with the induced topology and

Ker(w)×F endowed with the product topology, and let u, v : Ker(w)×F −→ F be the continuous linear

mappings given by u(x, y) = y and v(x, y) = x + y. Then, for each topological vector space H over L,

the diagrams

H[[G]] wH−→ H[[F ]]
uH−→−→
vH

H[[Ker(w)× F ]]

and

H[G]
wH |(H[F ])−→ H[F ]

uH |(H[F ])−→−→
vH |(H[F ])

H[Ker(w)× F ]

are exact.

Proof. Since, by Example 2, the diagram

Ker(w)× F
u−→−→
v

F
w−→ G

is exact, the result follows immediately from Corollary 9.

By Theorem 2.37 of [5], Corollaries 9 and 10 hold if G is a separated topological vector space over L

which is a Baire space, and hence if G is a metrizable and complete topological vector space over L.
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