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Resumo

Neste artigo apresentamos uma revisão da abordagem anaĺıtica da Trofodinâmica, consistindo

tanto de equações ecológicas quanto de equações de produção de Volterra. Uma breve descrição

dos conceitos geométricos utilizados, bem como da história de modêlos ecológicos e afins, é também

apresentada. Como exemplo, abordamos um moêlo da floresta climática de Clements e do processo

de sucessão, baseado um paralelo traçado com o processo de desenvolvimento embriológico e do

mecanismo de heterocronia. Todos cálculos foram realizados pelo pacote de computação algébrica

FINSLER, escrito sobre o Maple.

Abstract

In this paper we present a review of the analytical approach to Trophodynamics, consisting of both

ecological equations and Volterra production equations. Some background material on differential

geometry, as well as an historical sketch are also presented. As an example, we propose a model

of Clements’ climax forest and the process of succession based on a parallel with embryological

development and the mechanism of heterochrony. All calcutations were performed by the computer

algebra software FINSLER, based on Maple.

∗The first part of this work was presented in the 1st Symposium of Mathematical Biology, IMPA, Rio de Janeiro, April

2001. The second part was presented in the Meeting on Computational Modelling, IPRJ/UERJ, December 2004.

Key words: Differential Geometry, Projective Geometry, Finsler Spaces, Dynamics, Ecology, Succession.
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1 Introduction.

Given a smooth connected n-dimensional manifold Mn with local coordinates (x1, . . . , xn), the

collection of tangent vectors (to curves xi = xi(t), i = 1, . . . , n in Mn) at some point P (xi) ∈ Mn

defines the tangent space TPM at P . The collection of all tangent vectors to Mn defines TM , the

tangent bundle of M . Letting (xi, N i) denote the natural phase space coordinates on TM , consider the

2nd order system of ordinary differential equations (SODE)
dxi

dt
= k(i) N

i (not summed)

dN i

dt
= −Γijk N

jNk + rij N
j + ei,

(1.1)

where repeated indexes are summed (unless otherwise stated), all coefficients (possibly) depend on (xi,

N i, t), the n3 functions Γijk are homogeneous of degree zero in N i, and with smooth initial conditions

(xi0, N
i
0, t0). For almost 20 years this system has played a major role in mathematical theories of ecology,

evolution and development in colonial invertebrates, and also in epidemiology [9], [2], [5]. The coordinates

xi are Volterra’s production variables, whose constant per capita rate of increase is ki, while the 2nd

part of the system is a description of how different species or sub-populations of a colonial organism (i.e.

castes) N i ≥ 0 grow (rij), interact (Γijk) and react (ei) to external influences. In the ecological context,

this scheme must entail competition, symbiosis or parasitism, while predator effects usually require

additional equations coupled to (1.1). The condition that Γijk are functions of ratios of N i, stated above,

indicates the presence of so-called social interactions, which are higher-order, density dependent effects.

Whereas classical ecological theory would have Γijk merely constants, the theory of density dependent

social interactions, initiated by G. E. Hutchinson in 1946 [26], [25], found experimental verification in

the subsequent work of Wilbur, Hairston and others [39], [40], [23]. In 1991, work developed by Antonelli

and Bradbury [7], [8] indicated that Hutchinson’s theory should be recast using zero degree homogeneous

interactions (Γijk) in order to be consistent with experimental data. Unfortunatelly, the mathematical

approach that Hutchinson had used originally was intractable and his theory lay fallow for more than

40 years. Thus, 1991 marks the birth of a mathematically accessible theory of Hutchinsonian social

interactions, and also the realization that Finsler geometry describes cost-effective growth and physiology

in socially interacting colonial organisms like siphonophores, ants and other social insects, as well as

many marine species (Acropora corals). It also has been applied to the myxomatosis disease epidemic

model [13], [3], [11]. Furthermore, the addition of noise to Volterra-Hamilton theory, as described by

(1.1), has been successfully acomplished, a complete description being found in [3]. An introductory text

on the subject as a whole can be found in the textbook by Antonelli and Bradbury [11].

Recently this approach to ecology and related subjects, as well as geometrical modelling in general,

particularly making use of Finslerian geometries and/or systems of 2nd order ordinary differential equa-

tions (SODE), have been substantially facilitated by means of a purpose-developed computer algebra

package named FINSLER [34], based on Maple [30]. This software, in its present version, derives the

expressions of geometrical objects from a given (metric) function or connection (i.e. SODE), which, in the
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context of this paper, are ecologically interpreted in terms of stability of the system under consideration.

Some new results on well known ecological models have recently been obtained by means of this package

and other softwares available within Maple, in a work currently in progress [15].

2 Ecological models: an historical perspective.

Let us begin by describing the first attempts at modelling simple growth of (isolated) populations,

or those whose behaviour can be seen as independent of their interactions with other species and/or

environmental effects. Those were based on three simplifying assumptions, namely, that the rate of

increase (decrease) of the population size (or density) is a differentiable function of the population size

(density) itself,
dN

dt
= f(N), f differentiable. (I)

Secondly, it is assumed that there is no spontaneous generation, or if

N = 0 then
dN

dt
= 0. (II)

Finally, one should consider that there is a limit to the population size, given that space and/or resources

are themselves finite,

N ≤ Nmax for any given t. (III)

Given such assumptions, we can readily expand f(N) in powers of N , obtaining

dN

dt
= a+ b N + c N2 + . . . ,

where a, b, c are constants, and assumption (II) implies a = 0.

The 1st and simplest population model was proposed by Malthus and considered this series only up

to the linear term, giving an exponential growth as result

dN

dt
= b N ⇒ N = N(0) ebt, b > 0.

Although this model does not conform to the 3rd assumption above, it gives a good representation

of unbounded growth, particularly at early times, when a population has all resources needed and no

restrictions to its expansion.

Proceeding to consider the power expansion up to 2nd order, renaming b = λ and c = −λ/K (λ and

K > 0 being the so-called intrinsic growth rate and carrying capacity for N , respectively) we get the the

well-known logistic equation, which yields the logistic curve.

dN

dt
= λN

(
1− N

K

)
⇒ N(t) =

K

1 + be−λt

This S-shaped curve does conform to all 3 assumptions above, and models finite resources growth, and

is of frequent use in many fields, from biology to economics. Increasing exponentially at early times, N

changes inflection at K/2, and tends to the limit Nmax = K as t increases.
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We shall be using as well the notion of allometric growth, as proposed by Huxley in 1932, by which a

species growth preserves a proportionality among its parts. Considering growth unlimited by resources,

and say x(t) = Ceαt is a measure of the diameter of a tree. Then, if y(t) = Deβt is the total leaf biomass

in the same tree, then we have that xβ/α = Cβ/αeβt, or

y = M xβ/α, M =
D

Cβ/α
,

and β/α is characteristic of each species at a particular location. In practice, x(t), y(t) are avarage values

from a sample, thus y may be estimated from x from just a small randomly selected sample. This is a

standard technique in forestry for estimating crown biomass of a stand.

If there is need to consider resource limited growth, then we will have x = K/(1 + be−αt), y =

L/(1 + ae−βt), leading to

y =
L

a
(
K−x
bx

)β/α
+ 1

.

We can see that the system approaches equilibrium when x, y → K,L respectively, so, defining new

relative proportion variables x∗ = (K−x)/x, y∗ = (L−y)/y, we get Malthusian-like equations for these,

and therefore exponential decrease x∗ = be−αt, y∗ = ae−βt, thus leading to a relative proportion Huxley

allometric law which looks the same as before

y∗ = M∗ (x∗)β/α, M∗ =
a

bβ/α
.

We shall be using these alternative variables in an important example in section 4.

Now, consider that a species population’s growth may be affected by some other’s. These so-called

ecological interactions have been classically considered to fall into 3 possible categories, namely, as their

interaction goes on:

• predator-prey: growth rate of one species goes up, the other down;

• competition: both rates down;

• symbiosis: both rates up.

The 1st and simplest model of such interactions was proposed by Volterra in 1926 to explain the cycling

behaviour observed in fish populations in the Adriatic sea. Let N be the prey population size and P the

predator’s. Then their dynamic would be given by
dN
dt

= N (a− bP )

dP
dt

= P (cN − d),

(2.2)

where all parameters are positive constants. This model express the following basic assumptions:

(i) prey population without predation grows unboundedly (aN term);
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(ii) predators reduce prey population proportionally to both populations (−bNP term);

(iii) without predation, predator population decreases exponentially (−dP term);

(iv) prey’s effect in predator population proportional to both populations (+cNP term).

This model predicts an unstable oscillatory behaviour for both populations, prey’s peaking ahead of

the predator’s. A modern and more sophisticated version of the same interaction was proposed [9], [2]

for starfish predating on coral on the Great Barrier Reef,
dN
dt

= λN − αN2 − δNF

dF
dt

= −εF + γF p+1 + 2βNF,

(2.3)

predicting stable limit cycle for 1/2 < p < 1, which is non-existent if p > 1. The new mechanisms

considered here are the aggregation (γ) and reproductive potential (p) of the starfish (predator) population

F . The 2nd order term (not mixed) in each equation comes from logistic growth, and is corrected by

these mechanisms in the predator’s population. Parameters are again constants.

We call a trophic web Σ the community of n interacting species. Considered 2 by 2 at a time, if they

don’t interact, we have
dN i

dt
= λ(i) N

i

(
1− N i

K(i)

)
; i = 1, . . . , n.

If they compete, 
dN1

dt
= λ(1)N

1

(
1− N1

K(1)
− δ(1)

N2

K(1)

)
dN2

dt
= λ(2)N

2

(
1− N2

K(2)
− δ(2)

N1

K(2)

)
,

(2.4)

where the last terms are interaction (non-logistic) terms. If these were both positive, we would have a

symbiotic system, and if one were positive and the other negative, a parasitic system. The system (2.4)

models the famous competitive exclusion principle whereby only one of the 2 species survives [8].

3 Geometrical Background.

Consider a smooth connected n-manifold Mn and select a chart (U, h) on Mn for the slit tangent

bundle T̃Mn (i.e., without the zero section).

A local spray in (U, h) is a system of ordinary differential equations (SODE)

d2xi

ds2
+ 2Gi

(
x,
dx

ds

)
= 0 (i = 1, . . . , n), (3.5)

where the n functions Gi are Coo on U in xi and dxi/ds (off the zero section), otherwise continuous and

2nd degree positively homogeneous in dxi/ds.
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For an arbitrary parameter t along solutions of (3.5) we have the SODE

ẍi + 2Gi(x, ẋ) =
s′′

s′
ẋi, (3.6)

where s′ = ds/dt, s′′ = d2s/dt2, ẋi = dxi/dt, ẍi = d2xi/dt2. Consider the canonical spray connection

coefficients in (U, h):

Gij = ∂̇jG
i, Gijk = ∂̇kG

i
j , (3.7)

where ∂̇l indicates differentiation with respect to ẋl. A transformation of variables from (U, h) to (Ū , h̄),

i.e. (x1, . . . , xn) → (x̄1, . . . , x̄n) has the effect

∂x̄r

∂xj
∂x̄s

∂xk
Ḡirs =

∂x̄i

∂xr
Grjk − ∂2x̄i

∂xj∂xk
(3.8)

in the overlap region between U and Ū . Because Gi are homogeneous of 2nd degree in ẋl, we may have,

equivalently to (3.5),
d2xi

ds2
+Gijk

(
x,
dx

ds

)
dxj

ds

dxk

ds
= 0. (3.9)

We may also define IDi
jkl ≡ ∂̇lG

i
jk, the Douglas tensor, which transforms as a 4th-rank tensor. The

importance of ID lies in the fact that Gijk are independent of ẋl if and only if IDi
jkl = 0, i.e., the

vanishing of ID is necessary and sufficient for G to be a quadratic spray, as in classical affine geometry

and its specialization to Riemannian geometry. Its vanishing is equivalent to the existence of normal

coordinates x̃i at each P ∈Mn, in terms of which the transformed connection coefficients G̃ijk are zero at

P , and therefore we have straight lines through P . If the normal coordinates x̃i represents log(mi) then

we recover Huxley’s allometric law. In this case (3.9) is to be regarded as nonlinear allometric growth.

Under transformation of variables, we define the KCC-covariant derivative (after Kosambi, Cartan

and Chern [29, 21, 19]) of a vector field ξi defined along a curve γ(s) in Mn as

Dξi

ds
=
dξi

ds
+Girξ

r. (3.10)

Having defined a covariant derivative of a vector field allows us to introduce the notion of parallel

transport. We say a vector field ξi(s) defined along a curve γ : xi = xi(s) is parallel transported along γ

if Dξi/ds = 0, using Gir(x(s), ẋ(s)) in (3.10). If the intrinsic parameter s, for which equation (3.5) above

holds, is associated with a definition of distance in the manifold, i.e., a metric function is imposed on

Mn,

ds = F (x, ẋ), (3.11)

where F is itself homogeneous of degree 1 in ẋi, then, similar to straight lines in plane (Euclidean)

geometry, geodesics of F will be autoparallel curves, D2xi/ds2 = 0, i.e., their tangent vectors dxi/ds

are parallel transported along the geodesics. Solutions of (3.9) (or (3.5)) will be geodesics of Mn if we

replace Gijk by

Γijk = gih
[
1
2

(
Dghj
∂xk

+
Dghk
∂xj

− Dgjk
∂xh

)]
,
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where gih is the inverse of gih, gih = (gih)−1, and

D

∂xi
=

∂

∂xi
−Gji

∂

∂ẋj
.

If a metric (3.11) is defined on Mn we say that it is a Finsler space, or that we have a Finsler geometry

on Mn. Due to Euler’s theorem on homogeneous functions, we can write

F 2(x, ẋ) =
(

1
2

∂F 2

∂ẋi ∂ẋj

)
ẋiẋj ≡ gij(x, ẋ) ẋiẋj , (3.12)

or ds2 = gij(x, dx) dxidxj . The homogeneity condition is necessary and sufficient for the total distance

along a curve xi = xi(t),

s =
∫ t2

t1

F

(
x,
dx

dt

)
dt

to be independent of the chosen parametrization. This condition induces dependence on proportions

or rates (ẋi/ẋj). This fact will be very convenient to model social interactions, as we shall see in the

following section.

Another important result that makes Finsler geometry particularly well suited for ecological modelling

is that, for each of the 3 possible classical interactions (2.4), there is a “constant of the motion”[14] which

constitutes a Finsler metric function and plays the role of cost per unit of production s. This result is

known as the Division of Labour theorem, and solutions of the SODE (2.4) are not geodesics of this cost

function, meaning that the process is not perfectly optimal. For more details as how to relate Finsler

variables xi to biomass (or energy, etc) production/consumption for each polulation N i, see the next

section.

Using (3.10), we can reexpress (3.5) [or (3.9)] as

Dẋi

dt
= −εi = Gir ẋ

r − 2Gi. (3.13)

The contravariant vector field εi is the 1st KCC invariant of the SODE under transformation of coordi-

nates. εi = 0 is a necessary and sufficient condition for Gi to be positively homogeneous of degree 2 in

ẋi, i.e., the SODE to be a spray. Of course, we will have this if and only if t = as+ b, with constant a, b.

Varying solutions of (3.5) into nearby ones,

x̄i(t) = xi(t) + ξi(t) η, (3.14)

where |η| is small and ξi(t) a contravariant vector field defined along γ(t). Letting η → 0 yields the

variational equations
d2ξi

dt2
+ 2Gir

dξr

dt
+ 2

(
∂rG

i
)
ξr = 0, (3.15)

which, in invariant form, are
D2ξi

dt2
+ IBir ξ

r = 0, (3.16)

where

IBij = 2∂jGi + 2GrGijr − ẋr∂rG
i
j −GirG

r
j . (3.17)
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This tensor is the 2nd KCC invariant of the system (3.5). We can understand IBij as an invariant measure

of the deviation between the 2 curves concerned, i.e., how much one departs from the other. If those

curves represent the evolution in time of the production level xi(t) of 2 interacting species, then IBij

will naturally measure the stability of such system in the Jacobi sense, that is, if they have close initial

conditions xi(t0) = x̄i(t0), ẋ(t0) ≈ ˙̄x(t0) (that is, the populations sizes N i(t0) ≈ N̄ i(t0)) at some point

P (t0), then they will remain close with increasing t, xi(t) ≈ x̄i(t). This happens if we have positive

eigenvalues for IBij . The 3rd, 4th and 5th invariants are, respectively,

IBijk = 1
3

(
∂̇kIB

i
j − ∂̇jIB

i
k

)
IBiljk = ∂̇lIB

i
jk

IDi
jkl = ∂̇lG

i
jk,

(3.18)

where ID is the already mentionated Douglas tensor. Two systems (3.5) are equivalent under transfor-

mation of variables if and only if the 5 KCC invariants are equivalent. There exists coordinates in Mn

for which Gi all vanish if and only if all KCC invariants are zero. The 4th invariant generalizes the

4-index curvature tensor of Riemannian and Affine geometry.

4 Analytical Trophodynamics.

In 1977, J. L. Harper [24] had already pointed out that, because of their great plasticity, to describe

the dynamics of plant communities one would need total biomass (e.g., primary production) as well as

population numbers. So, we shall move now from the classical ecological field, which deals with po-

pulations sizes only, to one that takes into account the populations’ production (consumption) in the

description of their interactions. This other field is called trophodynamics, dealing with the population

dynamics of ecologically interacting species and their production (consumption). This field divides na-

turally in 2 different approaches: empirical trophodynamics, which proposes ‘stock and flows’ models

(stock of biomass, consumption/production of caloric energy, etc) to study their transformations in the

ecosystem, and analytical trophodynamics, which links ecological equations (competition, etc) to (Vol-

terra) production equations, seeking an analytical approach to ecological modelling. The first approach

to trophodynamics is concerned with refining field measurements and with determining the transforma-

tion between surrogates variables of biomass. The latter seeks to determine the underlying properties

of the dynamics, such as production stability, species interaction patterns and their efficiency, etc, their

intrinsic characteristics being described by curvatures, geometrical objects assossiated with the complete

specification of the Jacobi stability of production/consumption processes.

As an example, consider the Harper, Clatworthy and Leslie experiment with simple aquatic plants

[24], where the total biomass was fitted with the Gompertz growth curve. This empirical curve is the
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unique solution (assuming positive initial conditions) to

d2x∗

dt2
+ λ

dx∗

dt
= 0, ⇒ x∗ = ln m = ln a− c e−λ t.

Let us now consider the population of fronds to be given by relative proportion variables, as in the end of

section 2, instead of being population size or density N . Then N∗ = (K−N)/N induces a local splitting

of the above Gompertz SODE, namely, 
dx∗

dt
= N∗

dN∗

dt
= −λ N∗.

(4.19)

The 2nd equation is equivalent to the logistic for N , dN/dt = λ N(1−N/K), which agrees with Harper’s

conception of a plant as a population of modular units, in this case, fronds.

In order to make a mathematical model for trophodynamics, we shall introduce Volterra’s production

(consumption) variable xi(t) 1[1], a quantity produced by each species that may affect the ecological

and/or environmental Gijk interactions in the trophic web Σ,

xi(t) = l(i)

∫ t

0

N i(t)dt+ xi(0), (4.20)

where N i is the size of the ith population, li a positive constant and xi are surrogates variables of biomass,

which measure the production of biomass (secondary componds for defence, etc.) or consumption of

energy (measured as caloric energy, forms of carbon, wet weight, etc.).

Classical ecological equations and Volterra production equation combine to yield a 2nd order system

of ordinary differential equations (SODE) known as Volterra-Hamilton systems [11], [6]:
dxi

dt
= k(i) N

i

dN i

dt
= λ(i) N

i −Gijk N
jNk,

(4.21)

(where, in this case, the Gijk are n3 positive constants) yielding

d2xi

dt2
+Gijk

dxj

dt

dxk

dt
= λ

dxi

dt
. (4.22)

If we now take ds = eλtdt (such that (d2s/dt2)/(ds/dt) = λ), where s is called the intrinsic production

parameter, we get
d2xi

ds2
+Gijk

dxj

ds

dxk

ds
= 0, (4.23)

which is known as a constant spray, as in the previous section. For n = 2 we reproduce the ecological equa-

tions once we go from production parameter s back to the usual (time) parameter t. Volterra-Hamilton

1Note that both x∗ and xi(t) here defined are surrogate measures of biomass, but, although related, these are not the

same. See [13]
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systems, therefore, are the generalized mathematical framework proper to deal with trophodynamical

theories. In fact, this framework admits further generalizations, such as Gi = Gi(x, N, t), which hold

biological meaning, thus leading to more sofisticated and (hopefully) precise models.

The aquatic plants considered in (4.19) exhibit chemical defenses under laboratory conditions [4].

For an explicit model of chemical influences based on a Volterra-Hamilton system, we shall consider,

following [11], page 62, a plant’s chemical defense against herbivory according to Rhoades’ Theory of

Optimal Defense. Such a model would be

d2x

dt2
+

(
λ

K
+ gx

) (
dx

dt

)2

− λ
dx

dt
= 0 (4.24)

or, in Volterra-Hamilton form, using Volterra variable x,
dx
dt

= N

dN
dt

= λ N −
(
λ
K + gx

)
N2,

(4.25)

where g > 0 is Rhoades’ parameter which indicates strong plant response when g << 1. Switching to

the spray parameter we have
d2x

ds2
+

(
λ

K
+ gx

) (
dx

ds

)2

= 0. (4.26)

The 5 KCC-invariants are now easily computable. Using FINSLER, we get that they all vanish, meaning

that the chemical production is unstable in Jacobi sense, i.e., weakly chaotic. This is in accord with

Rhoades’ Theory of Optimal Defense. For multiple species chemical interaction models, please see [11].

We shall now introduce the notion of social interactions, which considers higher order terms than the

usual 2nd order ones of classical ecological interactions. Literature in the subject begins in 1946, when

Hutchinson [26], [25] proposed that cubic terms should replace classical quadratic terms in the 2-species

competition equations. Statistical evidence from field data to support the need for higher order terms

was produced later [39], [40], [23]. Wilbur states explicitly not only that ”higher-order interactions were

as important as main (ecological) effects”, but there was evidence of ”a complex interaction between

proportions as well as the abundances and the identity of the species”. Therefore, following [7], [8], we

shall model social interaction terms as (positively) homogeneous of 2nd degree in N i, so that they scale

as quadratic terms. These will frequently involve proportions (N i/N j), such as(
N2

N1

)4

(N2)2 ⇒
(
λN2

λN1

)4

(λN2)2 = λ2

[(
N2

N1

)4

(N2)2
]
, λ > 0,

conforming to Wilbur’s findings above.

As a example of application of a Volterra-Hamilton system with social interactions, we will choose a

model of interaction between two species of corals in the Great Barrier Reef of Australia [7], [12].
d2x1

ds2
−

[
−α1(N1)2 − α2

m
m− 1 N1N2 − α1

(N2/N1)(m−2)

m− 1 (N2)2
]

= 0

d2x2

ds2
−

[
−α2(N2)2 − α1

m
m− 1 N1N2 − α2

(N1/N2)(m−2)

m− 1 (N1)2
]

= 0.

(4.27)
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This system is stable. For reference, please see ibid.

5 Modelling Succession.

In 1915 the American ecologist F. E. Clements, conceived of a forest as a superorganism with a cha-

racteristic development analogous to the embryological development of an individual. Each has a time-

sequence of events: succession being a series of ecological stages, which we here and from now on in this

paper call ecoscenes, that a forest goes through until it reaches a climax, whereas a series of ontogenetic

stages culminates in an adult phenotypic individual. This climax forest would be optimal for the ambient

climate.

Previous work of ours on both succession in a forest and ontological development in an individual

[11, 18] has suggested: whereas development in an individual may be viewed as a series of genetically

controlled events allowing response to environmental influences, no such genetic control is available to a

forest as a whole. Moreover the concept of time-sequencing changes in the development of an individual,

called heterochrony, is an important evolutionary process and evidence for it is found in the fossil record

[31, 32]. But, for a forest, the notion of a phyletic line of fossils must be replaced by the concept of

a sere, which is a progressive series of ecoscenes. For a sere the ecological / physiological interactions

between populations of plants in an ecoscene are transformed into a new interaction pattern in a new

ecoscene. The ecoscene in Clements’ view is a product of the climate and is controlled by it. The new

interactions may be very different, but eventually the climax formation is reached. This is analogous

to the adult stage in development of an individual. No further major changes in community structure

occurs in Clements’ monoclimax theory. For historical account, see [37], [20] and [36].

6 Clements’ Concept of Succession.

As vegetation develops in an area, that area becomes successively occupied by different plant communi-

ties, each an ecoscene, in our terminology. Within a region, the final stage or climax results from the

series of successive stages, and regardless of whether it starts in open water, solid rock or denuded land,

the resulting climax is the same. Successions beginning in ponds, lakes, marshes or elsewhere in water

constitute a hydrosere. The movement from one stage of the sere to the next is usually continuous, but

when one dominant group of plants gives way to another, the change is clear. For example, floating

plants give way to reeds and rushes. In fact, a hydrosere begins with submerged plants, which are gradu-

ally replaced by floating plants, this followed by a sedge meadow, then woodland and finally the climax

forest.

The plant formation is the major unit of vegetation. It does not include animals, for this the word

biome is used. The formation can be continental in scope, and is a fully developed climax community of

a natural area. The formation is a complex and definite organic entity with a characteristic development

and structure. It is a product of the climate and is controlled by it. The deciduous forest of the eastern
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USA, the coniferous forest of the Great Lakes region, the tundra of the far north of Alaska and Canada,

and the grasslands of Saskatchewan and Manitoba are all examples. A formation arises, grows, matures

and finally dies. It is able to reproduce itself, as may be seen after fire, lumbering or other catastrophes

to vegetation.

The visible unity of a climax forest is due primarily to the dominants or controlling species of plants.

In prairie and steppe, it is the grass form, i.e., the climax dominants are all grasses and sedges. The

shrub life form characterizes the 3 scrub climaxes of North America, namely, the desert, sagebrush and

chaparral forms. The tree life form appears as coniferous, deciduous and broad-leaved evergreen, each

of which corresponds to the boreal, the temperate and the tropical climax forests, respectively.

Just as each stage in succession (i.e., ecoscene) has its temporary or seral dominants, so each formation

has its climax dominants. Each formation is named after 2 of its most widely spread and important

dominants. Examples are cedar-hemlock (coast forest climax) and spruce-larch (boreal forest climax).

Every climax formation consists of 2 or more major subdivisions Clements called associations. These

are climax communities associated regionally to constitute the formation. The number of associations is

determined by the number of subclimates within the general climate of the formation. Furthermore, each

association is marked by one or more dominants peculiar to it. Often, there are differences in the rank

and grouping of those dominants which range throughout the formation. Quite a useful analogy is: as

genus is to species, so formation is to associations.

Finally, it should be said that some ecologists and most range management scientists nowadays do

accept Clements’ view of the climax forest [22]. There is little doubt that his work, modified somewhat

over the years, is still very important. Indeed, it is the foundation of range and forest management

science in America, (see www.tarleton.edu...go to ”search”and type ”clements”).

7 Transformations along a Sere.

Primary productivity is the rate at which energy is bound or organic material is created by photosynthesis,

per unit of the earth’s surface per unit time. It is most often expressed as dry organic matter in g/per

square meter/year, or energy in KCal per square meter per year. Green plants are responsible for the most

part for primary production and they use a portion of the organic matter they create for respiration. The

total or Gross primary production less that amount for respiration is called the net primary production.

For example, for a single crop, net primary productivity in grams = stems + leaves + flowers + fruits

+ roots + loss to insects - seeds planted.

The study of production in a natural forest is more complicated than that for a single standing crop.

The reason is that there are always plants of differing ages in a forest. The techniques used by range

and forest managers are called “forest dimensional analysis” and involves allometric growth in the form

of log-log plots of diameters of trees at breast height, the trees being taken in statistically determined

samples. Using tables thus constructed, one is able to estimate the dry weights of the crowns of the trees

in the forest. This method was pioneered by American J. Kittredge in 1944 [28].
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Letting (xi, N i) denote the natural tangent bundle coordinates, consider the 2nd order system of

differential equations 
dxi/dt = k(i)N

i, (not summed)

dN i/dt = −ΓijkN
jNk + rijN

j + ei,

(7.28)

where all coefficients (possibily) depend on xi, N i, t; the n3 functions Γijk are homogeneous of degree

zero in the N i; and with smooth initial conditions xi0, N
i
0, t0. For almost 20 years this system has played

a major role in mathematical theories of ecology, evolution, and development in colonial invertebrates,

such as corals, starfish, bryozoans and other marine fauna. The coordinates xi are Volterra production

variables, whose constant percapita rate is ki, while the second part of this system is a description of how

the different populations N i ≥ 0 grow (rij), interact (Γijk) and react (ei) to external influences. For our

present purpose, these equations represent an ecoscene, the quantity xi is gross primary production of

modular units, like stems, leaves, flower parts, etc., for the ith species. The interaction between species

genererally occur among the same modular unit, i.e., roots versus roots, leaves versus leaves, etc.

ASSUMPTION We take the term ei = 0 in this section, representing a constant environment along the

sere. Moreover, the the interaction coefficients Γijk are not explicit functions of time.

Given a smooth scalar function ψ(x, N), first degree homogeneous in N , then consider the transfor-

mation

Γ̄ijk = Γijk + δij ψk + δik ψj + ẋi ∂̇kψj , (7.29)

where ψl := ∂̇lψ, ∂̇l indicating differentiation with respect toN l, x := (x1, . . . , xn) andN := (N1, . . . , Nn).

We want to futhermore specify that, if Γijk are constant up to order ε2, then Γ̄ijk are constant up to

order ε2. This obviously restricts the choice of ψ. As motivation for this definition of transformation of

ecoscenes, the reader is invitated to consult the references on heterochrony [10, 11]. Moreover, consider

the case rij = λ δij , where δij is the Kronecker delta and λ is a positive constant. Then we pass to the

long time-scale production parameter s via ds = eλt dt, the equations (7.28) take the 2nd order form

d2xi

ds2
+ Γijk

dxj

ds

dxk

ds
= 0. (7.30)

The effect of ψ is to change the parameter s along the solutions according to

p =
∫

e2
R
ψ(u,du) dt. (7.31)

where ψ is first degree homogeneous in du, where u a dummy integration variable. The resulting 2nd

order equation is
d2xi

dp2
+ Γ̄ijk

dxj

dp

dxk

dp
= 0. (7.32)

The parameter p is the new production parameter with the property that, if we set dp = eλ̄tdt, then

these equations become (7.28) with rij = λ̄ δij and Γ̄ijk replacing Γijk. These are the equations for the

new ecoscene. This process describes a ecoscene transformation.
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We now can state the following theorems about associations and associes, which we assume to have,

according to Clements, only a dominant and a codominant.

THEOREM A Every 2-species ecoscene in a constant environment is transformable into any other.

This theorem is false in every dimension bigger than 2 [35, 14].

REMARK To secure the constant coefficients upon ecoscene transformations, it may be necessary to

use different x variables, x̄ = (x̄1, . . . , x̄n), obtained by smooth non-singular transformations from the

original ones. But such is by no means always necessary.

There are special ecoscenes in our theory of transformations along a sere, among the 2-species associes.

THEOREM B In the category of constant environments, there is a 2-species associes which is inva-

riant under ecoscene transformations; it is necessarily classical symbiosis. Therefore, it is a 2-species

association, i.e., a climax. However, the steady-state is linearly unstable.

8 Classification of all 2-dimensional Ecoscenes.

To the data on biomass accumulation and net primary production, modern ecologists have added measu-

rement of nutrient movements in soil, in animal harvesting of plant tissue and in leaf litter and detritus

[38]. This is a philosophical move towards the view of vegetation championed first by A. G. Tansley,

a British friend of Clements. This view was taken up by H. Odum in the USA and called trophodyna-

mics of ecosystems. In this approach the formation concept is not sufficient, nor is the biome concept.

Rather, it is necessary to include abiotic criteria and measurement. Using such information, one obser-

ves the ecosystem as a functional system which conserves certain of its abiotic characteristics, as well as

Clementsian ones. For example, in a deciduous forest, typical nutrients include nitrogen, phosphorous,

potassium, sulfur, magnesium, to name a few. These nutrients enter the plants via the root, mainly.

More precisely, they enter via the symbiotic root-fungi called Mycorrhizae, which are filaments extending

from the very ample root surfaces into the soil. The nutrients are more highly concentrated in the leaves

than in woody tissues by a factor of 20. A reasonable quantitative statement is that nutrients in leaves

occur in allometric proportions, in the same way that the leaf biomass is allometrically related to the

breast high diameter of the tree [27, 28, 33].

There is an inverse relation between nutrient content and durability of plant tissues. The short-lived

photosynthetic tissues, i.e., leaves, cycle these nutrients back to the soil through leaf-littering. The total

amount of leaf-litter plus dead roots is in fact equal to the net primary productivity, less a small amount

lost to direct animal harvesting [38]. It follows, from the allometric relation, that the total amount of

nutrients is nearly conserved. Based on this, it is now possible to postulate a formal cost of primary

production in associes or associations which is conserved. Furthermore, ecoscene transformations can be

defined for a class of non-constant environments which preserve the formal costs of production, in that

each new ecoscene has one and it is conserved.
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We consider (7.28) again, only now we can introduce non-constant environments of the form

ei = −
(
δij σk(x)

)
N jNk, (8.33)

where σk(x) is a smooth covariant vector field on production space, where we introduce the (semi-

projective) ecoscene transformation

Γ̄ijk = Γijk + δij σk, (8.34)

so that (7.28) becomes 
dxi/dt = k(i) N

i

dN i/dt = −
(
Γijk + ψj δ

i
k + ψk δ

i
j

)
N jNk + rij N

j

(8.35)

where ψj = 1
2σj . In the case σk = ∂k σ for some smooth scalar σ(x), (8.33) takes the form

ei = − (∂k σ) NkN i = −dσ
dt

N i, (8.36)

where we have taken ki = 1 for convenience. Then (8.35) reads
dxi/dt = N i

dN i/dt = −Γijk N
jNk +

(
rij − δij dσ/dt

)
N j ,

(8.37)

which shows that a gradient-type ei directly affects the growth rates of N i.

Let us now introduce a classical notion, namely,

Ωijk :=
1
2

(
Γ̄ijk − Γ̄ikj

)
, (8.38)

the skew-part of Γ̄, and also

τ ijk := Ωijk −
1

n+ 1
δij Ωaak +

1
n+ 1

δik Ωaja, (8.39)

which we call the the Thomas tensor of Γ̄. The affine connection coefficients, Γ, Γ̄ have curvatures

denoted W i
jkl(Γ) and W i

jkl(Γ̄), respectively [10].

Let us assume rij = λ δij , λ > 0, ki = 1 in (7.28). We can now state

THEOREM C If (7.30) are Euler-Lagrange equations for ds = F (x, dx), a Finsler cost functional, then

a general ecoscene transformation Γ → Γ̄ results in (8.34) and (8.35), or the form,

d2xi

dp̄2
+ Γ̄ijk

dxj

dp̄

dxk

dp̄
= 0, (8.40)

with dp̄ = eσ. ds, if and only if τ ijk = 0 and W i
jkl(Γ) = W i

jkl(Γ̄). In this case, σk = ∂kσ and F̄ = eσ. F is

constant along solutions of (8.40).
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Proof. See the sections on Wagner connection theory in [16, 17, 13].

Consider now the Volterra-Hamilton system (7.28) with ei = 0, rij = λ δij , λ > 0, and pass to the

total primary production parameter s by ds = eλ t dt. Thus, (7.28) becomes

dyi

ds
= −Γijk y

jyk, (8.41)

where yi = dxi/ds = k(i) N
i/(ds/dt), and where F 2 has one of the following 3 forms:

(i) F 2 = L2. exp
{
2

[
−α1x

1 + (λ+ 1) α2x
2 + ν3x

1x2
]}
, L = (y2)1+

1
λ /(y1)

1
λ , αi > 0;

(ii) F 2 = (y2)2. exp
{
2

[
y1/y2 + (c1 − c2) x1 + c1x

2 + ν3x
1x2

]}
;

(iii) F 2 =
[
(y1)2 + (y2)2

]
. exp

{
2

[
α2

1+α
2
2

(α1+α2)2
(α1x

1 + α2x
2) + α2−α1

α1+α2
tan−1 y

1

y2 + ψ(x)
]}

.

Here, F = F (x, y) and ψ(x) = 1
2 [ν1(x1)2 + ν2(x2)2](see[17]and[14]).

The Euler-Lagrange equations for these 3 production cost functionals are, respectively,

(i)’ dy1/ds+ λ
(
α1 − ν3x

2
)
.
(
y1

)2 = 0

dy2/ds+ λ
(
α2 + ν3

λ+1 x
1
)
.
(
y2

)2 = 0;

(ii)’ dy1/ds+
(
c1 + ν3x

1
)
.
(
y2

)2 = 0

dy2/ds+
[
ν3

(
x2 − x1

)
− c2

]
.
(
y1

)2 + 2
(
c1 + ν3x

1
)
. y1y2 = 0;

and

(iii)’ dy1/ds+ 2 (α2 + ν2x
2) y1y2 + (α1 + ν1x

1)
((
y1

)2 −
(
y2

)2
)

= 0

dy2/ds+ 2 (α1 + ν1x
1) y1y2 + (α2 + ν2x

2)
((
y2

)2 −
(
y1

)2
)

= 0.

The Berwald-Gauss curvature scalar K for each case (ibid) is given as

(i)” K = λ2

λ+1 . ν3 .
(
y1/y2

)1+2/λ
. exp

{
−2

[
−α1x

1 + (λ+ 1) x2 + ν3 x
1x2

]}
;

(ii)” K = 2ν3 . exp
{
−2

[
y1/y2 + (c1 − c2) x1 + c1x

2 + ν3 x
1x2

]}
;

and

(iii)” K = −2 α2
1+α

2
2

(α1+α2)2
(ν1 + ν2) exp

{
2

[
φ(x) + α2−α1

α1+α2
tan−1(y1/y2)

]}
,

where φ(x) = α2
1+α

2
2

(α1+α2)2
(αixi) + 1

2

[
ν1(x1)2 + ν2(x2)2

]
.

We can see that the trajectories, i.e., geodesics in this case, are Jacobi stable in (i)” and (ii)”, if and

only if ν3 > 0. Note that y1/y2 = N1/N2 and N i > 0. Likewise, in the case (iii)”, trajectories are Jacobi

stable if and only if ν1 + ν2 < 0.
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THEOREM D (Classifications) With ν3 = 0 in (i) and (ii) and ν1 = ν2 = 0 in (iii), the equations (i)’,

(ii)’ and (iii)’ give the only constant coefficients Finsler geodesics in dimension 2.

Proof. See appendix of [13].

Let us now consider equations (7.28) with k1 and k2 small enough and of the same order of smallness

so that the coefficients in equations (i)’, (ii)’ and (iii)’ are constants up to order ε2. Thus k1/k2 = 1 up

to order ε2, so the corresponding curvatures K in the 3 corresponding cases are, in general, non-vanising.

Let us now consider non-constant environment ei of gradient type σk = ∂kσ with σ(x) = σkx
k. Thus,

e1 = −σ1 (N1)2 − σ2 N
1N2 and e2 = −σ2 (N2)2 − σ1 N

1N2, and, with the pre-symbiont condition

rij = λδij , λ > 0, exactly 3 new ecoscenes emerge from (8.35) with Γ given by the coefficients in each

of (i)’, (ii)’ and (iii)’. Writing only the second equation in the Volterra-Hamilton system, these are as

follows:

(i)′′′ dN1/dt = λ N1 − α̃1 (N1)2 − σ2 N
1N2

dN2/dt = λ N2 − α̃2 (N2)2− σ1 N
1N2

Sgn(σ1, σ2) is (+,+) for competition , (+,−) or (−,+) for parasitism and (−,−) for mutualism. All 3

cases exhibit linearly stable positive steady-states.

(ii)′′′ dN1/dt = λ N1 − c̃1 (N1)2 − σ2 N
1N2

dN2/dt = λ N2 − σ2 (N2)2 + c̃2 (N1)2 − (c̃1 + c1) N1N2

An unique linearly stable positive steady-state exists.

(iii)′′′ dN1/dt = λ N1 − α̃1 (N1)2 − σ2 N
1N2 + (σ1 − α̃1) (N2)2

dN2/dt = λ N2 − α̃2 (N2)2 − σ1 N
1N2 + (σ2 − α̃2) (N1)2

An unique linearly stable positive steady-state exists.

Let us now pass to the total primary production parameter s in each of the above 3 systems. In the

following, dxi/ds = yi:

(A) dy1/ds+ α̃1 (y1)2 + σ2 y
1y2 = 0

dy2/ds+ α̃2 (y2)2 + σ1 y
1y2 = 0,

(B) dy1/ds+ c̃1 (y1)2 + σ2 y
1y2 = 0

dy2/ds+ σ2 (y2)2 − c̃2 (y1)2 + (c̃1 + c1) y1y2 = 0,

(C) dy1/ds+ α̃1 (y1)2 + σ2 y
1y2 + (α̃1 − σ1) (y2)2 = 0

dy2/ds+ α̃2 (y2)2 + σ1 y
1y2 + (α̃2 − σ2) (y1)2 = 0.
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The tildes over the coefficients indicate that the coefficients are approximations and constants up to order

ε2. The reason for that is the choice we made for k1 and k2 to be small at the same order of magnitude.

Along any solution of (A), eσkx
k

. Fi is constant, Fi being the Finsler function F in (i) above. Li-

kewise, along any solution of (B), eσkx
k

. Fii is constant, where Fii is the Finsler functional in (ii) above.

Simililarly, eσkx
k

. Fiii is constant along any solution of (C), Fiii being the cost functional in (iii) above

[14].

REMARK The reader may fairly easy verify that dF̃ /ds = 0 along solutions of (A), (B), (C) where F̃

denotes the appropriate eσkx
k

. F function.

9 Conclusion.

Of the 6 systems above, (i)’, (ii)’, (iii)’ and (i)
′′′

, (ii)
′′′

, (iii)
′′′

, the (i)
′′′

splits into 3 cases, namely,

competition, parasitism and mutualism. Thus, there is a total of 8 systems. Each can be Jacobi

stable and can exhibit linearly stable steady-states. All 8 systems have a conserved quantity, namely

their associated Finsler production functionals. Yet, only the first 3 are geodesics. Moreover, all of

the 8 systems model conservation of nutrients, based on our assumption that they occur in allometric

proportion; nitrogen, for example, would be µx, where µ is in between 0 and 1 and x is the natural

logaritm of the leaf biomass [33].

It seems to us that (ii)’ or (B) above, the “commensal system”, is an appropriate model for domi-

nant/codominat forests. But as E. Warming pointed out 100 years ago, competition, parasitism and

mutualism are very common in vegetative communities, so (A) or (i)’ above is a model for this. Finally,

(C) or (iii)’ above has been used in elaborated models of coral interactions in marine ecology for more

than 20 years now. It seems to us that (C) or (iii)’ encodes both competition and cooperation for each

modular type.

There are no conservative 2 dimensional constant coefficients Volterra-Hamilton systems with pre-

symbiont condition other than the 8 above. All 8 are models of climax, not only with linear stability

for the populations, but also stability of production, i.e., Jacobi stability. The Jacobi stability for the

non-geodesic systems follows from either assuming σ1 and σ2 are small, or using the general KCC-theory.

The computation of the curvatures K can be performed by the computer package Finsler [16], [34].
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