

Cadernos do IME - Série Informática

e-ISSN: 2317-2193 (online)

DOI: 10.12957/cadinf.2024.88057

Methodology supported by a tool for Capturing Domain

Language in Web Applications

Angela Verónica Granizo Rodríguez1,3, Leandro Antonelli1,2, Sergio Firmenich1,4,

Diego Firmenich5

1LIFIA, Facultad de Informática – Universidad Nacional de la Plata (UNLP)

Calle 50 y 120, S/N – La Plata – Argentina

2CAETI, Facultad de Tecnología Informática – Universidad Abierta Interamericana

Buenos Aires. Argentina

3Escuela Superior Politécnica de Chimborazo (ESPOCH). Panamericana Sur km 1 y ½

Riobamba. Ecuador.

4CONICET. Godoy Cruz 2290. Ciudad Autónoma de Buenos Aires. Argentina.

5Departamento de Informática, Facultad de Ingeniería, Universidad Nacional de la

Patagonia San Juan Bosco. Argentina.

{vgranizo, lanto, sergio. firmenich}@ lifia.info.unlp.edu.ar,

dafirmenich@ing.unp.edu.ar

Abstract. Requirements engineering is crucial in the software life cycle, as

errors in requirements can be costly to correct in later stages. While people

are the main source of requirements, analyzing existing applications is

common, especially in reengineering. The Extended Lexicon of Language

(LEL) is a glossary that helps capture domain language, essential for

understanding both the domain and requirements. This article presents an

approach to extract domain language from a web application using the LEL

glossary. It involves three stages: general analysis, iterative language capture,

and verification. A web browser extension tool supports this approach.

Preliminary results show positive applicability.

1. Introduction

An important stage in the software lifecycle is requirements engineering, as errors made

in this phase can be difficult and costly to correct in later stages (BOEHM, 1997). Thus,

if the requirements are not correct, the development team may create a product that does

not meet the customer’s expectations (FORSBERG; MOOZ, 1991).

 It is essential to understand the language of the application domain in order to

gather high-quality requirements. The Language Extended Lexicon (LEL) is a glossary

(MESERVY et al., 2012) that helps to understand this language without focusing on the

software itself. The LEL organizes terms into four categories: subjects, objects, verbs,

12: Cadernos do IME : Série Informática : Vol. 50, Dezembro 2024

and states, and describes them using two attributes: notion and behavioral responses. It

has been shown to be an effective method for capturing domain language, standing out

for being easy to learn and use, as well as having good expressive capacity

(CYSNEIROS; DO PRADO LEITE, 2001). Therefore, it is considered a useful tool for

obtaining requirements in early stages (ANTONELLI et al., 2012).

 Traditionally, in software engineering, requirements are gathered from people or

documentation, but in some cases, the involvement of people may not be available. In

such cases, with the growth of the software industry, it has become common to analyze

existing applications to gather requirements through reverse engineering (FAHMI;

CHOI, 2007). Applications are a valuable source for understanding the domain

language as they contain encapsulated knowledge (BROOKS, 1997). Since capturing

the language requires considerable effort, it is important to have tools that facilitate this

task. Web browser extensions offer a convenient way to add functionalities to any web

page, making it ideal to have an extension that allows the language of an application to

be directly captured.

 This paper proposes a reverse engineering method to extract the language of a

domain from a web application using the LEL as a template. This process is supported

by a browser extension tool to facilitate the language capture. Furthermore, the paper

presents a preliminary validation of the method through the SUS survey (BROOKE,

1996). The structure of the document is organized as follows: Section 2 reviews the

background, Section 3 describes the proposed approach, Sections 4 and 5 provide

evidence of the approach’s applicability, Section 6 discusses related work, and finally,

Section 7 presents the conclusions and futute work.

2. Language Extended Lexicon

The Language Extended Lexicon (LEL) is a glossary used to describe the language of

an application domain, without necessarily requiring the definition of a software

application. Its purpose is to record the definitions of the terms specific to a domain in

order to "understand the language of a problem without worrying about the problem"

(LEITE; FRANCO, 1993). Understanding a domain involves learning the language used

in it, which highlights the importance of building an LEL.

 Within an organization, experts, end-users, and customers possess knowledge

about the domain, but they view it from different complementary perspectives.

Therefore, LELs must provide a unified and coherent representation of the language

being used. Language is expressed through symbols, which can be terms or short

expressions, and are defined by two attributes: notion and behavioral responses. Notion

refers to the denotation, that is, the essential characteristics of the symbol, while

behavioral responses describe its connotation, or the relationship between the described

term and other terms (Table 1 (ANTONELLI et al., 2023)). Each symbol in the LEL is

classified into one of four categories: subject, object, verb, or state. Table 2

(ANTONELLI et al., 2023) presents the characteristics of each category and how to

describe them.

13: Cadernos do IME : Série Informática : Vol. 50, Dezembro 2024

Table 1. LEL Symbol Description Template

Table 2. Template for Describing LEL Symbols by Category

3. Approach

The approach presented aims to analyze a web application (the input of this approach)

and extract the knowledge and requirements associated with it, which are described

through its own language, thus representing the output of the approach. Specifically,

this method uses an LEL glossary to describe the application's language. Therefore, it is

a reverse engineering method, as it derives a specification of knowledge and

requirements from an existing application, which could facilitate the development of a

new one.

 The approach consists of three main stages, carried out by the requirements

engineer: (A) general analysis of the web application, (B) domain language capture, and

(C) verification of the generated domain language. The method is partially supported by

a web browser extension during the domain language capture phase. Each stage is

organized into steps, and each step involves the execution of one or more activities.

 The first stage, corresponding to the general analysis of the web application,

focuses on conducting a preliminary study to understand its purpose, data, and

functionalities. The second stage, related to domain language capture, conducts a more

detailed analysis of the web application to identify essential components and define

glossary expressions based on them. The third stage, which is the verification of the

generated domain language, aims to review the definitions of the expressions, both

individually and for consistency between terms. It should be noted that this approach is

not strictly sequential; stages two and three can be repeated iteratively. Figure 1

summarizes this approach.

Category: symbol

Notion: description

Behavioral responses: Behavioral response 1

Behavioral response 2

Category Notion Behavioral response

Subject Who is he? What does he do?

Object What is it? What actions does it receive?

Verb What goal does it pursue? How is the goal achieved?

State What situation does it

represent?

What other situations can be reached?

14: Cadernos do IME : Série Informática : Vol. 50, Dezembro 2024

Figure 1. The approach

 The subsections below provide a detailed description of each stage. Each one is

illustrated using a website for the sale of agricultural products. This website offers plant

protection products for crop nutrition, pest control, and agricultural consultancy, both

general and specific. To support these activities, it includes a categorized knowledge

base on crop solutions, along with information about local suppliers. It also allows users

to contact agricultural professionals for consultations. It is important to note that the

website includes information on professionals in Africa.

3.1. General Analysis of the Web Application

This stage, which is the first in the approach, consists of two main steps: conducting a

(i) general analysis of the web application to be studied, and performing an (ii)

exploratory study of the application's domain. In other words, both the web application

itself and the application’s domain are analyzed.

 To execute step (i) the general analysis of the application to be studied, three

activities must be carried out. First, the application should be explored to understand its

overall purpose, which should be summarized in a concise sentence that begins with a

verb. For example, the purpose of the web application "Greenlife Crop Protection

Africa" is to "provide phytosanitary products for crop protection, nutrition, pest control,

and general agricultural consultancy in Africa."

 Second, a more detailed exploration of the application is necessary to create its

navigation map. This map should use squares to represent the pages and arrows to

indicate the direction of navigation. It’s important to note that the pages should be

identified conceptually. For instance, in an e-commerce application, the product

description page should be represented by one square, regardless of how many products

are available.

 For example, the Greenlife Crop Protection Africa website has a main page that

provides access to three sections: crop solutions, products, and services. From the crop

solutions page, users can browse different categories to find specific solutions. In the

products section, various product types are displayed, and users can select a product and

locate a distributor. Lastly, the services section offers three options: submitting

questions, finding an agricultural professional, and locating purchase points for

15: Cadernos do IME : Série Informática : Vol. 50, Dezembro 2024

products. The navigation map for this website is shown in Figure 2, while Figure 3

provides snapshots of the site’s different pages.

Figure 2. Navigation Map for Greenlife Crop Protection

Figure 3. Greenlife Crop Protection Website example

 Figure 3 illustrates the home page as the root of the navigation map. The second

webpage, representing the "types of products" section, is the next node at the second

level of the map. The third page, showing product information, is located at the third

level. The fourth webpage, which helps users find a distributor, appears at the fourth

level of the navigation map.

16: Cadernos do IME : Série Informática : Vol. 50, Dezembro 2024

 Third, a list of the application's general functionalities should be compiled. For

instance, the Greenlife web application for Africa provides phytosanitary products for

crop protection and nutrition, offers both general and specialized agricultural consulting,

contains a categorized knowledge base on crop solutions, and supplies information on

local vendors and agricultural professionals.

 To perform step (ii) the exploratory study of the domain, additional

documentation should be consulted, based on the findings from step (i).

3.2. Domain Language Capture

In this second stage of the approach, symbols are identified, categorized (as subject,

object, verb, or state), and described. This process involves defining the terms (symbols)

of the LEL and linking them to the web application. The notion and behavioral

responses of each symbol should also be described. It’s important to explore all pages of

the site to comprehensively capture the domain language. This stage consists of three

steps: (i) identifying symbols and their categories, (ii) describing the notion, and (iii)

describing the behavioral responses.

 The first step, identifying symbols and their categories, requires navigating the

entire web application using the navigation map to identify and categorize symbols. As

a result, a list of symbols, their categories, and their corresponding locations within the

HTML will be created. Note that a symbol may be linked to multiple elements across

different pages. The second step, describing the notion, defines the essence of the

symbols. This step comes after symbol identification to ensure a clearer understanding

of the symbols, making the descriptions more thorough. The third step, describing

behavioral responses, involves writing sentences like "a subject performs an action on

an object," where the subject, action, and object are symbols identified in the LEL.

 To carry out the activities in the first step (identification of symbols and their

categories), it is important to analyze and categorize each element of the web

application as a subject, object, verb, or state. Identifying and categorizing subjects

involves recognizing one of the following situations: (i) each user role or (ii) any

element in the web application (text, images, or any piece of information from any

medium) that represents a person or organization, associating it with a subject symbol.

The corresponding title will be the text describing the user role, person, or organization,

such as “farmer,” “agronomist,” or “company”. See Figure 4.

Figure 4. Farmer Subject Linked in the Greenlife Crop Protection Web
Application – Home Page

17: Cadernos do IME : Série Informática : Vol. 50, Dezembro 2024

 For objects, it is essential to identify any element in the web application that

represents resources, tools, or data. Its title should be a noun or a short phrase that

describes the passive element, such as “phytosanitary product,” “best product,”

“question,” “crop solution,” “store,” or “technical assistant.”

 For verbs, it is necessary to recognize (i) each button or (ii) any element in the

web application (text, images, or any piece of information from any medium) that

implies an action, which should be linked to a verb symbol. The title will be the

element's text, using an infinitive verb. For example, “ask a question” on the Greenlife

application’s homepage.

 States represent situations in which subjects, objects, or verbs can be found. To

identify them, it is necessary to locate any element in the web application (text, images,

or any information from any medium) that can be in a specific state. Its title describes

the transition of the identified subject, object, or verb. For example, “ pending receipt of

response to a question state.”

 The second step (description of the notion) involves defining the notion of each

symbol identified in the first step. The notion of the identified subject corresponds to its

characteristics or conditions and can be expressed using terms such as “is” or “has.”

Table 3 provides an example of the subject “farmer” and its notion. The notion of the

identified object refers to its attributes and is described similarly, as in the case of an

object “question,” which includes location, crop type, full name, email, phone number,

agricultural county, and question text.

Table 3. Farmer Subject - Notion

The notion of the identified verb is related to the action's objective, described with

phrases that answer questions like “for what purpose?” or “why?” it is performed. For

example, “Action to ask a question to an agronomist or technical assistant.” Regarding

states, their notion is the represented situation; for example, the state “awaiting

response” to a question posed by the farmer implies that they are waiting for an expert’s

response on the website.

 The third step (description of behavioral responses) focuses on defining the

behavioral responses of the symbols identified. For subjects, these are the actions they

perform, as exemplified in Table 4 with the subject “farmer.” A subject may lack a

notion or behavioral responses, as in the case of “company.” The behavioral responses

of the identified object refer to the actions taken upon it. For verbs, this involves

describing the necessary steps to carry out the corresponding action, explaining how

these actions are performed when interacting with the element. Finally, the behavioral

responses of the identified state are the actions required to transition to another state.

The next state derives from the behavioral responses of the previous state.

Subject Farmer

Notion It is anonymous use of the web applicaton

They navigate the website to obtain agricultural information

18: Cadernos do IME : Série Informática : Vol. 50, Dezembro 2024

Table 4. Farmer Subject – Behavioral responses

 This process ensures that the domain language is fully captured and linked to

specific elements of the web application.

3.3. Verification of the Generated Domain Language

This stage involves reviewing the symbols from the domain language capture phase and

making any necessary adjustments. The outcome is a set of verified symbols. The

process consists of three steps: (i) verifying the description of each symbol based on the

template provided in tables 1 and 2 from the background section, (ii) checking for

duplicates, and (iii) identifying any new symbols.

 The first step, which focuses on verifying the description of each symbol

according to the proposed template (internal consistency), entails reviewing both the

accuracy of the symbol’s notion and its behavioral responses to ensure a clearer

understanding of the symbol. Additionally, this step allows for the revision of the

symbol's title to ensure it is correctly defined.

 In the second step, checking for duplicates (external consistency), it is possible

to find the same symbol in different parts of the website with different titles or

definitions. In such cases, the repeated symbols are consolidated, creating a new symbol

that includes both titles and combines the definitions. Alternatively, if the same title is

used for the repeated symbol, adjustments are made accordingly.

 The third step, identifying new symbols, involves reviewing the existing symbol

definitions and recognizing that a new symbol should be defined. This new symbol

must also appear on the analyzed website. It is added to the LEL glossary, following the

process used for capturing domain language. Once added, these new symbols undergo

the same verification steps as the previous ones, ensuring consistency and accuracy.

4. Tool Support

A browser extension tool for Google Chrome was created to assist with the proposed

approach during the domain language capture stage. Figure 5 provides an example of

the Greenlife Crop Protection Africa website that was analyzed. On the right side, a box

displays the view of the developed browser extension. The architecture of the tool is

structured as follows: a user interface layer through the web browser extension, a

microservices layer, and a data layer. The tool was built using JavaScript, with the front

end developed using the AngularJS framework (ANGULARJS, [s.d.]) and the backend

Subject Farmer

Notion It is anonymous use of the web applicaton

They navigate the website to obtain agricultural information

Behavioral responses: The farmer asks a question

The farmer consults the best phytosanitary product

The farmer searches for an agricultural topic

The farmer contacts an agronomist

The farmer consults a store

19: Cadernos do IME : Série Informática : Vol. 50, Dezembro 2024

utilizing the Express framework (NODEJS, [s.d.]). Additionally, MongoDB

(MONGODB, [s.d.]) was used as the database. The tool functions as an extension

within the browser, with its primary feature being the identification of symbols from the

LEL glossary within an existing web application. This is accomplished using web

augmentation techniques that visually capture each DOM element (image), its location

on the website, and the DOM object's XPATH. All captured data is stored in JSON

format in the database

Figure 5. Web browser extension

4.1. Domain Language Capture Design

The domain language capture tool is based on the diagram shown in Figure 6,

developed as a web browser extension utilizing web augmentation techniques. This tool

allows for the creation of structures directly within the browser, temporarily storing

them in local storage before transferring them to a non-relational database.

 Figure 6 displays the package and class diagram that represents the tool's design,

highlighting two main packages: (i) End-User Support and (ii) Metamodel, which are

described below.

20: Cadernos do IME : Série Informática : Vol. 50, Dezembro 2024

Figure 6. Package and Class Diagram of the Domain Language Capture Tool

 The End-User Support package contains classes that function as data transfer

objects and provide support for user functionalities. The SymbolDefinitionTool class

manages the complete symbol definition and DOM object capture within the application

in use, while VisualizationTool processes user queries on the defined LEL elements,

which can be filtered via the Filter class.

 The Metamodel package provides the main structure for storing the application’s

domain language. The Symbol class is responsible for storing each defined symbol, first

in local storage and then in the database through the StorageManager class.

Additionally, symbol classification is organized within the classes Subject, Object,

Verb, and State.

 The DOMObject and SearchDOMObject classes are responsible for locating the

defined symbols along with the DOM objects on the website under analysis, using

XPATH. Finally, the `DOMImage` class manages images captured from the DOM

objects previously selected by the user within the application from which the domain

language is captured.

5. Evaluation

The proposed approach was evaluated using a web browser extension tool, specifically

designed to support the process. In particular, the second phase of the approach was

evaluated, which focuses on capturing domain language related to the identification of

symbols and categories, as well as the description of notions and behavioral responses.

21: Cadernos do IME : Série Informática : Vol. 50, Dezembro 2024

 The evaluation involved 12 members of a research project at the University of

La Plata, Argentina. All participants had experience in software development and took

on the role of requirements engineers to perform reverse engineering. Their task was to

identify an object symbol anywhere on the IMDb (Internet Movie Database) website

and record the corresponding notion and behavioral responses, following the proposed

approach. IMDb is a well-known platform that hosts an online database for movies,

television, and video games.

 Participants were provided with a guide, and they carried out the activity with

the support of the browser extension. It is important to note that the participants had no

prior experience with the LEL glossary. They also received training on the proposed

approach, particularly on the domain language capture stage, before beginning the

experiment.

 To assess the applicability of the approach, the System Usability Scale (SUS)

(BROOKE, 1996) (BROOKE, 2013) was used. Although the SUS is primarily used to

evaluate the usability of software systems, it has also proven effective for evaluating

processes and products (BANGOR; KORTUM; MILLER, 2008). This scale consists of

a 10-item questionnaire, with responses recorded on a five-point scale, ranging from "1"

("Strongly disagree") to "5" ("Strongly agree"). Although the questionnaire includes 10

questions, they are paired, meaning the same question is asked from a complementary

perspective to ensure more reliable results.

 The SUS score is calculated as follows: first, items 1, 3, 5, 7, and 9 are scored by

subtracting 1 from the assigned value. Then, items 2, 4, 6, 8, and 10 are scored by

subtracting the assigned value from 5. Afterward, the scores for each participant are

summed and multiplied by 2.5 to obtain a final value on a scale from 0 to 100. Finally,

the average score is calculated.

 The approach is classified into one of the following categories: "Not acceptable"

(0-64), "Acceptable" (65-84), and "Excellent" (85-100) (CYSNEIROS; DO PRADO

LEITE, 2001). The obtained score was 71.04, placing the approach in the "acceptable"

category.

6. Related works

Reverse engineering has been explored from various perspectives as a tool for

extracting requirements from already developed systems. Hassan et al. (HASSAN et al.,

2015) focus on extracting requirements directly from the source code of a legacy

system. In turn, our method seeks to capture and understand domain language through a

web application using the LEL. Although both approaches use reverse engineering, each

is applied in different contexts and employs different methods to achieve its goals. We

use reverse engineering to gather information about requirements, similarly to Aman et

al. (AMAN; IBRAHIM, 2013). However, they propose an XML-based framework that

uses UML to generate software requirements specifications.

 On the other hand, Fahmi et al. highlight the application of reverse engineering

in application renewal (FAHMI; CHOI, 2007), focusing on identifying retained

functions, redundancies, and reusable elements, which aligns with our goal of gaining a

deep understanding of domain language through reverse engineering. As for

Tramontana (TRAMONTANA, 2005), this author suggests a reverse engineering

approach specifically for web applications, differing from ours in methodological

22: Cadernos do IME : Série Informática : Vol. 50, Dezembro 2024

aspects, particularly in the combination of reverse engineering with UML diagram

reconstruction.

 Su et al. (SU; ZHOU; ZHANG, 2008) propose an aspect-oriented software

reverse engineering framework to understand cross-cutting properties in legacy systems

at the requirements level. In contrast, our approach emphasizes understanding domain-

specific language through the LEL glossary and reverse engineering. Sabir et al.

(SABIR et al., 2019) propose a model-driven reverse engineering (MDRE) framework,

called "Source to Model Framework (Src2MoF)," to generate structural (class) and

behavioral (activity) diagrams of the Unified Modeling Language (UML) from Java

source code. Both approaches apply reverse engineering. However, their approach

produces UML diagrams, whereas ours generates an LEL. Bolchini et al. (BOLCHINI;

PAOLINI, 2002) introduce a lightweight methodology that combines goal-oriented

requirements engineering and scenario-based techniques. While our approach seeks to

extract domain language from a web application, theirs focuses on conceptual tools and

a lightweight methodology for requirements analysis in web applications.

 Mukhtar et al. (MUKHTAR; AFZAL; MAJEED, 2012) use general dictionaries

to identify compound words that include essential or atomic words. While our approach

focuses on reverse engineering from web applications to obtain domain language, theirs

concentrates on analyzing the specific vocabulary of a software application, which

constitutes a subset of domain language.

 Antonelli et al. (ANTONELLI; ROSSI; OLIVEROS, 2016) propose and validate

a strategy to collaboratively capture domain language using the LEL. Our approach

focuses on obtaining domain language from the web application. Garrido et al.

(GARRIDO et al., 2020) propose an agile methodology for building mathematical

programming models using LEL and scenarios. Both approaches use LEL to capture

domain language but differ in specific application, domain of interest, and methodology

employed. Antonelli et al. (ANTONELLI et al., 2021) also employ kernel sentences as

input and generate use cases as output, which can be incorporated into the LEL

produced by our approach.

 On the other hand, Antonelli et al. (ANTONELLI; BIMONTE; RIZZI, 2022)

present a method that builds a multidimensional schema from the domain language

obtained through the LEL. The LEL from our web application could serve as input for

this method. In a different study, Antonelli et al. (ANTONELLI et al., 2023) propose an

approach to consider the application domain language, captured through its vocabulary,

to refine it and obtain a language restricted to the boundaries of the software

application. In our case, we obtain an LEL from a web application, which can be used

as input in this approach. In another study, Antonelli et al. (ANTONELLI et al., 2022)

propose a collaborative method for generating a conceptual model from natural

language specifications using kernel sentences. Although this method is different from

ours, it could be incorporated into the behavioral responses section of the LEL using

these kernel sentences.

7. Conclusions and future work

This article proposes a reverse engineering approach to extract the language of a

specific domain from a web application, using the LEL glossary. This method is

structured into three main stages: a general analysis of the web application, the capture

23: Cadernos do IME : Série Informática : Vol. 50, Dezembro 2024

of domain language, and the verification of the generated language. A preliminary

evaluation was conducted to validate the method’s applicability, and a browser

extension is presented to facilitate the process.

 Domain language is essential for understanding both the domain context and its

requirements; if these contain errors, correcting them in later stages of software

development requires considerable effort. It is also common practice to analyze existing

applications when developing new systems. The LEL serves as a structured glossary for

capturing domain language, and the main contribution of this article is the generation of

an LEL from a web application to represent this language.

 To improve the proposed method, a more comprehensive evaluation is

recommended through a case study. Additionally, the approach’s effectiveness will be

demonstrated, and a baseline will be established to compare the tool's performance with

that of a human user.

References

AMAN, H.; IBRAHIM, R. Reverse Engineering: From Xml to Uml for generation of

software requirement specification. 2013 8th International Conference on

Information Technology in Asia - Smart Devices Trend: Technologising Future

Lifestyle, Proceedings of CITA 2013, p. 1–6, 2013.

ANGULARJS. No Title. , [s.d.]. Disponível em: <https://angular.io/>. Acesso em: 18

mar. 2024

ANTONELLI, L. et al. Deriving requirements specifications from the application

domain language captured by Language Extended Lexicon. Anais do {WER12} -

Workshop em Engenharia de Requisitos, Buenos Aires, Argentina, April 24-27,

2012. Anais...2012.

ANTONELLI, L. et al. Specification Cases: a Lightweight Approach based on Natural

Language. Workshop em Engenharia de Requisitos. Anais...2021. Disponível em:

<https://doi.org/10.29327/1298728.24-5.>

ANTONELLI, L. et al. An approach to extract a conceptual model from natural

language specifications. (L. Antonelli, M. Lucena, R. L. Q. Portugal, Eds.)Anais do

{WER23} - Workshop em Engenharia de Requisitos, Porto Alegre, RS, Brasil,

Agosto 15-17, 2022. Anais...{LFS} (UFRN, Brasil), 2022. Disponível em:

<https://doi.org/10.29327/1298356.26-12>

ANTONELLI, L. et al. Defining the language of the software application using the

vocabulary of the domain. Electronic Journal of SADIO, v. 22, n. 3, p. 2–14, 2023.

ANTONELLI, L.; BIMONTE, S.; RIZZI, S. Multidimensional modeling driven from a

domain language. Automated Software Engineering, v. 30, n. 1, p. 6, 2022.

ANTONELLI, L.; ROSSI, G.; OLIVEROS, A. A Collaborative Approach to Describe

the Domain Language through the Language Extended Lexicon. Journal of Object

Technology, v. 16, n. 3, p. 1–27, 2016.

BANGOR, A.; KORTUM, P. T.; MILLER, J. T. An Empirical Evaluation of the

System Usability Scale. Intl. Journal of Human-Computer Interaction, v. 24, n. 6, p.

1–44, 2008.

24: Cadernos do IME : Série Informática : Vol. 50, Dezembro 2024

BOEHM, B. W. Software Engineering. [s.l.] Computer society Press, IEEE, 1997.

BOLCHINI, D.; PAOLINI, P. Capturing Web Application Requirements through Goal-

Oriented Analysis. WER. Anais...2002.

BROOKE, J. “SUS-A quick and dirty usability scale.” Usability evaluation in industry.

[s.l.] CRC Press, 1996.

BROOKE, J. SUS: a retrospective. Journal of usability studies, v. 8, n. 2, p. 29–40,

2013.

BROOKS, F. P. The Mythical Man-Month. 2. ed. [s.l.] Addison-Wesley Professional,

1997.

CYSNEIROS, L. M.; DO PRADO LEITE, J. C. S. Using the Language Extended

Lexicon to Support Non-Functional Requirements Elicitation. Proceedings of the

Workshop em Engenharia de Requisitos. Anais...Buenos Aires, Argentina: 2001.

FAHMI, S. A.; CHOI, H.-J. Software Reverse Engineering to Requirements. 2007

International Conference on Convergence Information Technology (ICCIT 2007).

Anais...IEEE, 2007. Disponível em:

<https://ieeexplore.ieee.org/document/4420580/>. Acesso em: 5 mar. 2022

FORSBERG, K.; MOOZ, H. The Relationship of System Engineering to the Project

Cycle. Proceedings of the First Annual Symposium of National Council on System

Engineering. Anais...1991.

GARRIDO, A. et al. Using LEL and scenarios to derive mathematical programming

models. Application in a fresh tomato packing problem. Computers and Electronics

in Agriculture, v. 170, p. 105242, 2020.

HASSAN, S. et al. Software Reverse Engineering to Requirement Engineering for

Evolution of Legacy System. 2015 5th International Conference on IT Convergence

and Security (ICITCS). Anais...IEEE, 5 ago. 2015. Disponível em:

<http://ieeexplore.ieee.org/document/7293021/>. Acesso em: 29 out. 2022

LEITE, J. C. S. DO. P.; FRANCO, A. P. M. A strategy for conceptual model

acquisition. Proceedings of the {IEEE} International Symposium on Requirements

Engineering. Anais...1993.

MESERVY, T. O. et al. The Business Rules Approach and Its Effect on Software

Testing. IEEE Software, v. 29, n. 4, p. 60–66, 2012.

MONGODB. No Title. , [s.d.]. Disponível em: <https://www.mongodb.com/es>

MUKHTAR, T.; AFZAL, H.; MAJEED, A. Vocabulary of Quranic Concepts: A semi-

automatically created terminology of Holy Quran. 2012 15th International Multitopic

Conference (INMIC). Anais...2012. Disponível em:

<https://doi.org/10.1109/INMIC.2012.6511467>

NODEJS. No Title. , [s.d.]. Disponível em: <https://nodejs.org/en>

SABIR, U. et al. A Model Driven Reverse Engineering Framework for Generating High

Level UML Models From Java Source Code. IEEE Access, v. 7, p. 158931–158950,

2019.

25: Cadernos do IME : Série Informática : Vol. 50, Dezembro 2024

SU, Y.; ZHOU, X.-W.; ZHANG, M.-Q. Approach on Aspect-Oriented Software

Reverse Engineering at Requirements Level. 2008 International Conference on

Computer Science and Software Engineering. Anais...IEEE, 2008. Disponível em:

<https://ieeexplore.ieee.org/document/4722062/>. Acesso em: 6 mar. 2022

TRAMONTANA, P. Reverse engineering Web applications. 21st IEEE International

Conference on Software Maintenance (ICSM’05). Anais...2005. Disponível em:

<https://doi.org/10.1109/ICSM.2005.77>

