
Parallel implementations of TSP brute force algorithm

Rafael Almenara Ventura Alves1, Maria Clicia S. Castro2, Cristiana Bentes1

1Faculdade de Engenharia

2Instituto de Matemática e Estatı́stica
Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brasil

almenara.r@gmail.com, clicia@ime.uerj.br, cris@eng.uerj.br

Abstract. The traveling salesman problem is a famous combinatorial optimiza-
tion problem. Despite its great importance, there is no good exact solution for
the generic case. Considering the existence not only of CPUs with many cores
but also of GPUs allowing a more generic use and being more popular, this work
tries to answer the question: up to what size of problem is it possible to solve
in parallel through brute force in a timely manner? For this, implementations
were developed in OpenMP, MPI, and CUDA.

1. Introduction
The Traveling Salesman Problem is a classic mathematical problem. Its main goal is
to find the shortest route that a salesman can take when visiting a set of cities. The
salesman starts at an initial city, should visit each city only once, and returns to the starting
city. It is a well-known combinatorial optimization problem that has many applications,
from finding better logistic routes to improving chemical processes and integrated circuit
fabrication [Cook et al. 2011].

Despite its great importance, TSP is an NP-Hard problem in which the number of
possible orders of visits to the cities grows exponentially with the number of cities. For
this reason, there is no efficient algorithm that produces the exact solution for a generic
case. The only algorithm that is able to give the exact solution to the generic case of TSP
is the brute force algorithm. The brute force algorithm checks all of the (n − 1)! route
possibilities of visiting n cities, and establishes which is the shortest route among all of
them. Therefore, for big values of n, it becomes infeasible to find the best route of TSP
using the brute force algorithm [Garey and Johnson 1979].

In this work, we propose to explore parallel processing in order to make the brute
force algorithm feasible for a greater value of n than the ones usually handled by sin-
gle machines that solve the problem sequentially. We propose to exploit the parallelism
present in the most common computer architectures today: multicore processors, clusters
of computers, and graphics processing units (GPUs). For each of these architectures, we
propose the use of a different parallel programming model.

Cadernos do IME - Série Informática
e-ISSN: 2317-2193 (online)
DOI: 10.12957/cadinf.2024.79821



98 : Cadernos do IME : Série Informática : Vol. 49, Julho 2024

For the multi-core architecture, we propose a shared memory algorithm imple-
mented using OpenMP. For the distributed architecture of a cluster of computers, we
propose a message-passing algorithm using MPI. For the massively parallel architecture
of a GPU, we propose a fine-grain parallel algorithm using CUDA. We evaluate the per-
formance of the brute force algorithm in these three parallel environments and show some
important optimizations provided in each programming model.

Our results show that it is possible to gain speed in solving brute force TSPs
through parallelism but at the cost of large clusters and a lot of energy. Even so, for still
small sets of cities, in the order of dozens. Modern applications require sets of hundreds
and even thousands of cities, which still seems a long way off.

The remainder of this paper is organized as follows. Section 2 shows some of
the most related works. Section 3 presents the brute force algorithm to solve the TSP.
Section 4 presents the parallel algorithms proposed: OpenMP, MPI and CUDA. Section 5
shows the performance results of our parallel algorithms. Finally, in Section 6 we con-
clude our work and show some directions for future work.

2. Related Work

The Travelling Salesman Problem (TSP) has traditionally deterministic methods, such as
brute force or Greedy approach [Sahalot and Shrimali 2014, Baidoo and Oppong 2016],
to solve it with the exact solution. They are the oldest solutions that do not require auxil-
iary information or probabilistic procedures. The brute force methods at all times return
the correct result. They are good for testing the correctness of faster algorithms.

Brute force algorithms require exponential computation for every new city
added. Gohil et al. [Gohil et al. 2022] proposed parallel implementations of the brute
force algorithm that are close to our solutions. They used the shared memory, dis-
tributed memory, and GPU paradigms. Our proposal exploits the same paradigms
and APIs but with different algorithms and execution environments. In terms of
the permutation generation, we exploit and compare two approaches: the lexico-
graphic order [Djamegni and Tchuenté 1997] and the Johnson and Trotter algorithm
[Johnson 1963]. Our GPU implementation is also different because we propose differ-
ent strategies for the reduction operation.

Currently, there are methods to solve the TSP problem using heuristics with
different approaches to avoid the exponential computational time [Laporte 1992]. Al-
though these heuristics are not exact methods, they can deal with a larger number
of cities. They focus on various aspects such as processing time, development ef-
fort, and solution quality. Examples of these solutions, with different implementa-
tions, are Genetic Algorithm (GA) [Grefenstette et al. 2014], Ant Colony Optimiza-
tion (ACO) [Bianchi et al. 2002, Mavrovouniotis et al. 2017], and Simulated Annealing
(SA) [Johnson et al. 1989, Johnson et al. 1991].

3. The brute force algorithm for the Traveling Salesman Problem

The main idea behind the brute force algorithm is to search from all possible routes for
the one with the smallest cost. The algorithm is quite simple. From an input of n cities,
each permutation of the n cities is a possible route. The algorithm computes the route



99 : Cadernos do IME : Série Informática : Vol. 49, Julho 2024

cost assembled by each permutation and keeps the one with the lowest one. The details
of each step of the algorithm are described in the following sections.

3.1. Read Input

The first step of the program is to receive the input data. The input data is a set of ge-
ographical locations, called cities, represented by cartesian coordinates. Each input line
contains a string of type “x y”, where x and y are integers representing city coordinates.
The x coordinates are stored in an array X and the y coordinates are stored in an array Y ,
where the index of these arrays is the index of the city.

3.2. Calculate Distances

In this step, the Euclidean distance between all pairs of cities is computed and stored in
a distance matrix, D. The distances will be used in the next steps to evaluate the cost of
the route. The computation of the Euclidean distances of each pair of cities is described
in Algorithm 1.

Algorithm 1: Calculate distances between coordinates.
1 Initialize matrix D with zeros;
2 n← length of arrays X and Y ;
3 for i← 1 to n do
4 for j ← 1 to n do
5 D[i][j]←

√
(X[i]−X[j])2 + (Y [i]− Y [j])2;

6 end
7 end

3.3. Build the Initial Route

The initial route is built arbitrarily as an increasing sequence of integers from 0 to n− 1,
where n is the number of cities. For example, for 5 cities, an array [0 1 2 3 4 0] is
built, where the first position of the array represents the first city, the second position is
the second city on the route, and so on. Table 1 shows an example with 3 cities and its
coordinates, a route [0 2 1 0] is: [(325,492), (878,1204), (552,890), (325,492)].

City Index Coordinates
0 (325,492)
1 (552,890)
2 (878,1204)

Table 1. Example with 3 cities and its coordinates

3.4. Compute the Route Cost

The computation of the cost of each route is very simple. The pre-calculated values of the
distances between each two cities are recovered from the distances matrix D and added
together to compose the route cost. Then the cost of the route is compared with the best
route found so far, if the cost is smaller than the best route, it is saved as the best route.
The Algorithm 2 describes this step.



100 : Cadernos do IME : Série Informática : Vol. 49, Julho 2024

Algorithm 2: Calculate sum of distances among the cities in the route.
1 Initialize sum S to 0;
2 n← length of array A;
3 for i← 1 to n do
4 S ← S +D[A[i]][A[i+ 1]];
5 end
6 if S < BestV alue then
7 BestV alue← S;
8 end

3.5. Next permutation calculation

The most important step in the brute force algorithm is the computation of the next per-
mutation (or route) to be analyzed. It is the most expensive step in the brute force com-
putation and special attention should be given to it.

There are plenty of different algorithms proposed in the literature to generate the
permutations of a given set of numbers [Sedgewick 1977]. Only a few algorithms, how-
ever, have proven to be good candidates for the brute force TSP since the problem requires
certain conditions, and they need to be able to be parallelized. For example, a great num-
ber of permutation algorithms are based on recursion. However, the recursive algorithm
is not usually well suited to parallelism, since each iteration of the recursion depends
on the memory of the previous iteration, making it difficult to distribute the tasks. In
addition, not defining the total number of iterations can lead to rapid exhaustion of the
scarce individual resources of each thread. In this work, we studied two different per-
mutation generation algorithms: Johnson and Trotter [Johnson 1963] and Lexicographic
generation [Djamegni and Tchuenté 1997].

3.5.1. Johnson and Trotter Algorithm

The Johnson and Trotter algorithm has an iterative version and a recursive one. The
Algorithm 3 shows the iterative version. At the core of the algorithm are the concepts of
mobile elements and their directions. An element is mobile if it is larger than the element
it points to in its designated direction. The direction of an element is determined by the
relative order of the elements in the permutation. The algorithm starts by initializing
a permutation, often as the identity permutation (i.e., elements in ascending order). It
then identifies the mobile elements within the permutation. The algorithm systematically
rearranges the mobile elements to produce the next permutation, repeating until no more
mobile elements can be found. This procedure ensures the generation of all permutations.

3.5.2. Lexicographic Generation

The lexicographic order generation algorithm calculates the permutations without using
auxiliary structures. Another important aspect of this algorithm is that it is able to cal-
culate any permutation k without having to calculate all the previous permutations. This



101 : Cadernos do IME : Série Informática : Vol. 49, Julho 2024

Algorithm 3: Johnson-Trotter permutation generation algorithm.
1 Initialize array D (list of decreasing values from n to 1);
2 Initialize array P ′ as a copy of P ;
3 Initialize a list permutations;
4 while There are mobile elements in P ′ do
5 Find the largest mobile element m in P ′;
6 for Each element x in P ′ do
7 if x > m then
8 Swap x and m in P ′;
9 Swap the corresponding elements in D;

10 Add a copy of P ′ to permutations;
11 Break;
12 end
13 end
14 Reverse the direction of all elements in P ′ and D that are greater than m;
15 end
16 return permutations;

possibility has some advantages for a parallel implementation. The Lexicographic gener-
ation algorithm is described in Algorithm 4 and Algorithm 5.

The algorithm begins with the initial permutation, often sorted in ascending order.
It continuously generates the next permutation by finding the rightmost element in the
sequence that can be modified to produce a lexicographically larger permutation. The
selected element is replaced with the smallest element to its right that is greater than itself,
ensuring a minimal change that maintains the lexicographic order, a sequence where each
permutation follows the previous one based on its natural order. This process repeats until
all permutations are generated.

Algorithm 4: Lexicographic permutation generation.
1 Sort P in ascending order;
2 Initialize a list permutations;
3 while NextPermutation(P ) is true do
4 Add a copy of P to permutations;
5 end
6 return permutations;

4. Parallelizing the brute force TSP

The brute force algorithm can be parallelized using two strategies: (1) parallelize the
search step for the next permutation, or (2) divide the problem into sub-tasks, where each
sub-task is composed of a set of routes, the final solution is the best among the local
solutions of each sub-tasks [Cesari 1996]. In this work, we used strategy 1 with Johnson
and Trotter, and strategy 2 with Lexicographic Generation and compared both.



102 : Cadernos do IME : Série Informática : Vol. 49, Julho 2024

Algorithm 5: Finding the next permutation in lexicographic generation.
1 Find the largest index i such that P [i] < P [i+ 1];
2 if No such index i exists then
3 return false;
4 end
5 Find the largest index j such that P [i] < P [j];
6 Swap elements P [i] and P [j];
7 Reverse the subarray from P [i+ 1] to the end of the array P ;
8 return true;

Following, we describe the three parallel implementations proposed that exploit
different parallel programming paradigms: shared memory, message passing, and GPU
computing. For all of them, the read input and the build of the distance matrix are made
sequentially.

4.1. Shared Memory Implementation

The parallel implementation of the brute force algorithm that exploits the shared mem-
ory paradigm is based on the widely adopted parallel programming specifications
OpenMP [Chapman et al. 2007].

4.1.1. Implementation with Johnson and Trotter

In the parallel implementation of the Johnson and Trotter permutation generation algo-
rithm, it is not possible to divide the routes into sub-tasks because each permutation de-
pends on the previous one to be found. However, since the process of finding the next
permutation is iterative, we can parallelize the loop that iterates through each element of
the array P ′ (line 6 of Algorithm 3).

In this implementation, the construction of the initial route and the computation
of the route cost are made sequentially. When a new permutation is required, the parallel
algorithm creates several threads to find the next permutation. Each thread compares an
element of P’ with the largest mobile M, swapping elements to find the next permutation
if it’s bigger. Then, all threads are synchronized to the main thread to calculate the cost.

4.1.2. Implementation with Lexicographic Generation

For lexicographic generation, the total number of possible routes, R, is divided by the
number of threads, T . So, each thread should calculate the cost of R/T routes. The
threads create their first permutation (route) based on the thread ID and the number of
routes per thread. Lexicographic generation allows us to get a Kth permutation without
passing by the previous permutations.

For example, for 5 cities and 3 threads, there are 120 possible routes, and each
thread is responsible for computing the cost of 40 routes. Thread 0 starts at route 0,
thread 1 starts at the 40th route, and thread 2 at the 80th route. Each thread generates its



103 : Cadernos do IME : Série Informática : Vol. 49, Julho 2024

initial route, calculates the route cost, generates the next permutation, and so on, repeating
this R/T times. The work done by each thread is described in Algorithm 6.

Each thread computes the local best route and saves this value in a shared array
indexed by the thread ID. After all threads finish their computation, the main thread com-
pares the local best routes to find the best one. This procedure is described in Algorithm
7.

Algorithm 6: Work performed by a single thread.
1 Permutation← FindKPermutation(ThreadID ∗RoutesPerThread);
2 for i← 1 to RoutesPerThread do
3 AnalyzePermutation(Permutation);
4 Permutation← NextPermutation(Permutation)
5 end

Algorithm 7: Split the routes among threads and find the global result.
1 BestV alue←∞ ;
2 Initialize empty array BestLocalResults;
3 RoutesPerThread← NumberOfCities!/NumberOfThreads;
4 for 1 to NumberOfThreads do
5 CreateThread(RoutesPerThread,BestLocalResults)
6 end
7 Await threads to finish;
8 for i← 1 to NumberOfThreads do
9 if BestLocalResults[i] < BestV alue then

10 BestV alue← BestLocalResults[i];
11 end
12 end

4.2. MPI implementation

In the message-passing paradigm, we decided to implement only the lexicographic per-
mutation generation, since this is the computation of each route independent and does
not require communication between processes. Therefore, the MPI implementation has
a work division similar to the OpenMP implementation. For P MPI processes and R
possible routes to be evaluated, each process evaluates R/P routes. The distributed im-
plementation, however, requires that the number of routes be analyzed and the matrix
with the distances between the cities are sent to each process. At the end of the local
calculations, each process sends its best route back to process 0. After process 0 receives
the messages from all processes, it finds the best route among the local solutions. The
Algorithm 8 describes the MPI implementation.

4.3. GPU implementation

In order to take advantage of the GPU massive parallel environment, we chose the lex-
icographic permutation generation algorithm for the parallel implementation. Since the



104 : Cadernos do IME : Série Informática : Vol. 49, Julho 2024

Algorithm 8: Split the routes among processes and find the global result.
1 BestV alue, BestLocalV alue←∞ ;
2 Initialize empty array ProcessesID;
3 RoutesPerProcess← NumberOfCities!/NumberOfProcesses;
4 for 1 to NumberOfProcesses do
5 ProcessID ← CreateProcess(RoutesPerProcess) ;
6 SendData(ProcessID, DistanceMatrix);
7 Append ProcessID to ProcessesID array;
8 end
9 for i← 1 to length(ProcessesID) do

10 BestLocalV alue← ReceiveData(ProcessID) ;
11 if BestLocalV alue < BestV alue then
12 BestV alue← BestLocalV alue;
13 end
14 end

lexicographic generation allows evaluating a number of routes in parallel, the GPU im-
plementation assigns a number of routes to each thread.

The main algorithm starts reading the input data and building the distance matrix
in the CPU. The next step is to transfer the distance matrix to the GPU global memory.
After that, the CUDA threads are started, and each of them is responsible for evaluating a
set of routes based on the thread ID. In the end, there is a need for a reduction operation
in order to determine the best route from all the threads. We implemented two versions
of this algorithm that employ different ways to perform the reduction operation in finding
the best route.

4.3.1. Reduction in the CPU

The first version implements the reduction operation in the GPU global memory. The idea
is to create a global array with one entry for each thread. So, each thread saves in this
array its local best route found. After all threads have finished, this array is sent to the
CPU, which goes through all the elements to find the smallest.

4.3.2. Reduction in the GPU

We also implemented an alternative version for finding the best route. As the data to be
reduced is on the GPU, it is possible to use the massive parallelism of the GPU to perform
the reduction operation. After all the CUDA threads have found their local best solution,
the first half of the CUDA threads, starting from thread 0, are selected to search for the
global solution. Each of these threads compares elements i and i + T , where i is the
thread ID and T is the number of threads operating the reduction at that moment. After
the comparison, the smallest value is saved in the position i of the array. As the number
of elements in the array has been halved, one-quarter of the threads will now be used to
repeat the process. This procedure continues until the array has only one element. So,



105 : Cadernos do IME : Série Informática : Vol. 49, Julho 2024

position 0 stores the best global solution. This value is sent to the CPU to display the
result and end the program.

4.3.3. Optimizing Memory Access

We also implemented a third version of the GPU implementation that takes advantage of
the faster-access memory inside the GPU, the shared memory. Since each CUDA thread
accesses many times the distance matrix, we transferred part of this matrix to the shared
memory of each Streaming Multiprocessor of the GPU. The idea is that thread 0 from
each block transfers part of the distance matrix to the respective shared memory. When
the routes are evaluated by threads, they read the distance between the cities in a faster
way. For this implementation, we implemented the reduction operation in the CPU.

5. Experimental Results
The goal of any parallelization strategy is to reduce the execution time for a given prob-
lem. One way of measuring this is by calculating speedup, a performance metric that tells
you how much parallel processing gains over sequential processing. There are various
definitions of speedup and, consequently, various ways of calculating it. This work uses
the definition of absolute speedup: the speedup is equal to the time spent by the serial im-
plementation divided by the time spent by the parallel implementation [Sun and Ni 1990].

5.1. Execution environment

Two execution environments were used in our experiments. Machine A consists of an
Intel® Core™ i5-13400F CPU, 16GB of RAM, and an Nvidia GeForce RTX 4060 GPU
using Windows 10. Machine B consists of an AMD Ryzen 7 2700 CPU, 16GB of RAM,
and an Nvidia GeForce RTX 3060 GPU using Ubuntu 18.04. Table 2 shows the detailed
information about the CPUs used, and Table 3 shows the information about the GPUs
used.

Machine CPU Number of cores Clock Base L1 Cache L2 Cache
A Intel® Core™ i5-13400F 10 2.5GHz 800KB 12MB
B AMD Ryzen 7 2700 8 3.2GHz 768KB 4MB

Table 2. CPUs used in our experiments

Machine GPU Architecture CUDA Cores Clock Base Global memory
A RTX 4060 Ada Lovelace 3072 1830MHz 8GB
B RTX 3060 Ampere 3584 1320MHz 12GB

Table 3. GPUs used in our experiments

We executed all the experiments ten times in each machine. The results are the
average of these ten executions.

5.2. Comparing the Permutation Algorithms

Table 4 and 5 shows the execution times of the sequential brute force TSP algorithm for
up to 15 cities using the two forms of generating the permutations, Johnson and Trotter



106 : Cadernos do IME : Série Informática : Vol. 49, Julho 2024

and Lexicographic. We can observe in this table that Lexicograph generation performs
much better than the Johnson and Trotter algorithm. For 13 cities, it is more than 5 times
faster. It was not possible to complete the execution for 14 cities or more with Johnson
and Trotter algorithm.

Cities Johnson and Trotter (s) Lexicographic (s)
6 0.001 0.001
7 0.001 0.001
8 0.008 0.001

10 0.473 0.011
11 4.487 0.088
12 49.582 0.987
13 878.641 12.329
14 >999.999 161.214
15 >9999.999 2361.746

Table 4. Execution times (in seconds) of the two sequential permutation genera-
tion algorithms in machine A

Cities Johnson and Trotter (s) Lexicographic (s)
6 <0.000 <0.000
7 <0.000 0.001
8 0.003 0.001
9 0.015 0.004

10 0.087 0.022
11 0.774 0.165
12 8.644 1.820
13 103.350 23.183
14 >999.999 323.226
15 >9999.999 4803.881

Table 5. Execution times (in seconds) of the two sequential permutation genera-
tion algorithms in machine B

5.3. OpenMP Results

Table 6 and 7 shows the execution times in seconds of the parallel OpenMP implementa-
tions of the brute force algorithm with 10 and 70 threads. The overly elevated execution
times of the parallel implementation with the Johnson and Trotter algorithm prevented us
from executing it with more than 13 cities.

Figure 1 shows the speedup of these executions when compared to the sequential
algorithm. We can observe in this figure that the parallel implementation with the Johnson
and Trotter algorithm provides speedups below 1, which means that the parallel algorithm
is slower than the sequential one.

In the Johnson and Trotter algorithm, the most compute-intensive loop is executed
several times, but each execution contains only a few iterations. In this case, the loop
parallelization implies overheads of creating and terminating the threads, but the amount
of work computed by each thread is not significant.

Also, in Figure 2, it can be seen that when the lexicographic permutation algorithm
is used, we obtained performance gains when compared to the sequential algorithm. For



107 : Cadernos do IME : Série Informática : Vol. 49, Julho 2024

Cities Johnson and Trotter (10 threads) Lexicographic (10 threads) Lexicographic (70 threads)
6 0.019 0.016 0.033
7 0.038 0.016 0.033
8 0.079 0.016 0.033
9 0.611 0.016 0.033

10 5.155 0.016 0.033
11 50.228 0.030 0.049
12 571.566 0.260 0.208
13 >999.999 2.687 2.240
14 >9999.999 38.780 30.879
15 >99999.999 595.980 445.360

Table 6. Execution times (in seconds) of OpenMP implementations in machine A

Cities Johnson and Trotter (10 threads) Lexicographic (10 threads) Lexicographic (70 threads)
6 <0.000 0.001 0.004
7 0.001 0.001 0.004
8 0.007 0.001 0.004
9 0.029 0.001 0.004

10 0.252 0.007 0.009
11 2.667 0.038 0.031
12 31.498 0.315 0.238
13 408.252 3.759 2.799
14 >9999.999 50.626 37.797
15 >99999.999 700.732 563.176

Table 7. Execution times (in seconds) of OpenMP implementations in machine B

this implementation, there is a substantial amount of work for each thread to compute and
the overhead of creating and terminating the threads is compensated. When we compare
the speedups obtained for using 10 and 70 threads, we can observe that using 70 threads
provides higher speedups because this is a memory-bound application and the memory
access latency can be hidden by processing another thread.

5.4. MPI Results

Table 8 shows the execution times in seconds of the parallel MPI implementation of the
brute force algorithm running in machine A with 10 (number of physical CPU cores) and
16 (physical plus performance CPU cores) processes. Table 9 shows the same implemen-
tation in machine B with 8 (total CPU cores) processes. In Figure 3, we plot the speedup
curves of all the MPI implementations.

However, it is important to notice that this is a small environment for the MPI
execution. Running this implementation on a cluster of computers would be more correct,
where more scalable results would be achieved. The use of a cluster is a possible future
work.

5.5. GPU Results

Table 10 shows the execution times in seconds for execution in machine A of the three
CUDA implementations of the brute force algorithm: (1) Reduction in the CPU; (2) Re-
duction in the GPU; (3) Shared Memory. Table 11 shows the execution times for the three
implementations running in machine B.



108 : Cadernos do IME : Série Informática : Vol. 49, Julho 2024

Figure 1. Comparing the speedup of OpenMP implementations on machine A and
B for both algorithm strategies with different cities size

Cities Time for 10 Processes (sec) Time for 16 Processes (sec)
6 0.001 0.001
7 0.001 0.001
8 0.001 0.001
9 0.001 0.001

10 0.004 0.003
11 0.016 0.012
12 0.144 0.115
13 1.780 1.348
14 25.450 17.730
15 406.122 287.661

Table 8. Execution times (in seconds) of MPI implementation in machine A

In both tables, we can observe that there was no significant difference between the
execution times of the two different strategies for the reduction operation (performed by
the CPU or by the GPU). The reduction performed by the GPU may be preferable when
the amount of data grows. In the cases tested, the implementation of the reduction in
the CPU is still quite efficient for the reduction of an array in the order of a few tens of
thousands of items. Because of this, and the lower complexity of its implementation, the
shared memory version of the CUDA implementation performs the reduction in the CPU.

Figure 4 shows the speedups of the CUDA implementations in the two machines.
Firstly, the speedups obtained in machine B are impressive, over 70x. This confirms that
the massively parallel environment of the GPU is adequate to accelerate the brute force
algorithm and compute the exact solution of TSP in a reasonable time (for up to 16 cities
at least). Secondly, exploiting the GPU shared memory for the distance matrix has a sub-
stantial impact on the brute force performance that is even more pronounced in machine
B where the speedup increases from around 70x to over 100x. Thirdly, when we compare
the performance of machine A and machine B, we can observe that the increased number
of cores of the GPU of machine B makes a huge difference in the overall performance.



109 : Cadernos do IME : Série Informática : Vol. 49, Julho 2024

Figure 2. Comparing the speedup of OpenMP implementations on machine A and
B with Lexicographic Algorithm with different cities size

Cities Time for 8 Processes (sec)
6 <0.000
7 <0.000
8 <0.000
9 0.001

10 0.006
11 0.030
12 0.288
13 3.635
14 49.800
15 746.017

Table 9. Execution times (in seconds) of MPI implementation in machine B

Cities Reduction in the CPU Reduction in the GPU Shared memory
10 0.015 0.016 0.012
11 0.018 0.018 0.013
12 0.053 0.054 0.032
13 0.445 0.442 0.234
14 5.662 5.668 3.219
15 83.386 84.555 48.826

Table 10. Execution times of CUDA implementations (in seconds) for machine A

6. Conclusions

In this work, we presented parallel implementations of the TSP brute force algorithm
using different parallel programming paradigms, OpenMP, MPI, and GPU program-
ming with CUDA. We carried out experiments on two different machines and obtained
speedups for the three parallel paradigms. We observed that there is a minimum size of
12 cities to achieve reasonable speedups. We also demonstrated that the massive power
of a modern GPU allowed us to evaluate 16! routes in a few minutes and also allowed us
to achieve speedups of more than 70 times.



110 : Cadernos do IME : Série Informática : Vol. 49, Julho 2024

Figure 3. Comparing the speedup of MPI implementations on machine A and B
in different cities size

Cities Reduction in the CPU Reduction in the GPU Shared memory
10 0.011 0.011 0.012
11 0.012 0.011 0.013
12 0.032 0.032 0.032
13 0.296 0.296 0.234
14 4.648 4.650 3.219
15 69.074 69.077 48.826

Table 11. Execution times of CUDA implementations (in seconds) for machine B

Figure 4. Comparing the speedup of CUDA implementations on machines A and
B in different cities sizes

When the number of cities increases, however, the brute force solution would
require a high computational cost. In addition, values greater than 20! do not fit in cur-
rent registers. In this case, it would be necessary to partition this number into multiple
registers, increasing the amount of processing and memory accesses, which may even
compromise the gains of parallel implementations.



111 : Cadernos do IME : Série Informática : Vol. 49, Julho 2024

For future work, we envision a solution that combines all the parallel programming
paradigms and takes advantage of a distributed system that contains multicore processors
and GPUs.

References
Baidoo, E. and Oppong, S. O. (2016). Solving the tsp using traditional computing ap-

proach. International Journal of Computer Applications, 152(8):13–19.

Bianchi, L., Gambardella, L. M., and Dorigo, M. (2002). An ant colony optimization ap-
proach to the probabilistic traveling salesman problem. In Guervós, J. J. M., Adamidis,
P., Beyer, H.-G., Schwefel, H.-P., and Fernández-Villacañas, J.-L., editors, Paral-
lel Problem Solving from Nature — PPSN VII, pages 883–892, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Cesari, G. (1996). Divide and conquer strategies for parallel tsp heuristics. Computers &
operations research, 23(7):681–694.

Chapman, B., Jost, G., and Van Der Pas, R. (2007). Using OpenMP: portable shared
memory parallel programming. MIT press.

Cook, W. J., Applegate, D. L., Bixby, R. E., and Chvátal, V. (2011). The traveling sales-
man problem: a computational study. Princeton university press.

Djamegni, C. T. and Tchuenté, M. (1997). A cost-optimal pipeline algorithm for permuta-
tion generation in lexicographic order. Journal of Parallel and Distributed Computing,
44(2):153–159.

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman, San Francisco.

Gohil, A., Tayal, M., Sahu, T., and Sawalpurkar, V. (2022). Travelling Salesman Problem:
Parallel Implementations & Analysis. DOI:10.48550/arXiv.2205.14352.

Grefenstette, J., Gopal, R., Rosmaita, B., and Van Gucht, D. (2014). Genetic algorithms
for the traveling salesman problem. In Proceedings of the first International Confer-
ence on Genetic Algorithms and their Applications, pages 160–168. Psychology Press.

Johnson, D. S., Aragon, C. R., McGeoch, L. A., and Schevon, C. (1989). Optimization
by simulated annealing: An experimental evaluation; part i, graph partitioning. Oper-
ations research, 37(6):865–892.

Johnson, D. S., Aragon, C. R., McGeoch, L. A., and Schevon, C. (1991). Optimization by
simulated annealing: an experimental evaluation; part ii, graph coloring and number
partitioning. Operations research, 39(3):378–406.

Johnson, S. M. (1963). Generation of permutations by adjacent transposition. Mathemat-
ics of computation, 17(83):282–285.

Laporte, G. (1992). The traveling salesman problem: An overview of exact and approxi-
mate algorithms. European Journal of Operational Research, 59(2):231–247.

Mavrovouniotis, M., Müller, F. M., and Yang, S. (2017). Ant colony optimization with
local search for dynamic traveling salesman problems. IEEE Transactions on Cyber-
netics, 47(7):1743–1756.



112 : Cadernos do IME : Série Informática : Vol. 49, Julho 2024

Sahalot, A. and Shrimali, S. (2014). A comparative study of brute force method, nearest
neighbour and greedy algorithms to solve the travelling salesman problem. Interna-
tional Journal of Research in Engineering & Technology, 2(6):59–72.

Sedgewick, R. (1977). Permutation generation methods. ACM Computing Surveys
(CSUR), 9(2):137–164.

Sun, X.-H. and Ni, L. M. (1990). Another view on parallel speedup. In Proceedings of
the 1990 ACM/IEEE conference on Supercomputing, pages 324–333.


