

Cadernos do IME - Série Informática

e-ISSN: 2317-2193 (online)

DOI: 10.12957/cadinf.2023.75934

A Never-Ending Story: Revisiting Requirements Major

Misunderstandings

Julio Cesar Sampaio do Prado Leite[0000-0002-0355-0265]

Instituto de Computação – Universidade Federal da Bahia

Rio de Janeiro – RJ – Brasil

julioleite@ufba.br

Abstract. A magic medallion is central in Michael Ende’s novel, and it is

depicted as two snakes biting each other, in a loop. Folk tale says that the

design of the medallion changed for the Wolfgang Petersen’s movie, depicting

an even deeper image of infinity. The medallion turned out to be an icon for

the story’s fans. This paper will unleash a broad view of the realm of

requirements and requirements engineering, comparing it to Percival’s quest

for the Holy Grail. Using literate and pop metaphors the paper posits that

requirements engineering is an education process, which must be performed

with transparency. Historical misunderstandings of requirements are

reviewed, pitfalls to avoid are signaled and new trails to be built are

proposed.

Resumo. A medalha mágica é central no romance de Michael End. Esta

medalha mostra duas cobras mordendo uma à outra, em um enlace. A crença

popular diz que o desenho da medalha mudou para o filme de Wolfgang

Petersen, ressaltando, na imagem, uma sensação de infinito ainda maior.

Essa medalha tornou-se um amuleto para os fãs da estória. Esse artigo irá

brotar uma visão ampla no campo de requisitos, comparando-a à busca de

Percival pelo cálice sagrado. Utilizando metáforas acadêmicas e da cultura

popular o artigo afirma que a engenharia de requisitos é um processo

educacional, que deve ser feito com transparência. Equívocos históricos sobre

requisitos são revistos, armadilhas a serem evitadas são apontadas e novos

caminhos a serem construídos são propostos.

1. Introduction

This paper is a reviewed edition of an earlier publication in the WER 22 – 25th

Workshop on Requirements Engineering [Leite 2022]. As per the title, it treats

misunderstandings about requirements. In this context, the major misunderstanding is

akin to the conception that software production is marked by well-defined steps. In this

conception, usually, the step for producing a requirements document is the first one.

10: Cadernos do IME : Série Informática : Vol. 48, Junho 2023

Worse is the fact that this view is commonly taught in universities and in training

courses, as of today. In a Dagstuhl workshop held in 2008, Brooks [Brooks 2009]

explicitly warned about this unfortunate situation.

 This misunderstanding generated and continues to generate negative impacts,

like:

A.critical problems in the final product,

B.waste of resources in the production cycle,

C.lack of confidence in software engineering, and

D.lack of confidence in requirements engineering.

 The title of the article is just to stress this point: the requirements artifact is a

never-ending story, as well as the field of requirements engineering itself. This paper is

careful in explaining what that means on a broader view of the requirements

engineering discipline.

 However, other major misunderstandings can be listed, like:

1.failure to understand the concept of context,

2.the failure to understand the intertwining of the several levels of design,

3.the rush to formalize, or cast in stone, when only partial semantics are

available,

4.the failure to understand that by the end of the day there will be a running

code to fulfill the requirements,

5.the reliance on pictures rather than models, forgetting the real meaning of

analysis,

6.the failure to understand that the requirements is a result of a perennial

complex political negotiation, so more than just client needs, and

7.the illusion that a complete set of requirements is just the result of good

engineering.

 These misunderstandings contribute to the negative impacts listed above. As

such there is one major misunderstanding and seven others that contributes to the

problems about requirements.

 These 1 + 7 misunderstandings help contextualize the complexity of the

discipline of requirements engineering. However, by equating requirements engineering

to education, an even more complex scenario will be uncovered. As such, the Arthurian

legend of Percival [Furtado 1992] and his quest for the Holy Grail will be a useful

metaphor, for the understanding the limitations of the field.

 Notwithstanding, requirements can and must be engineered. This paper posits

that requirements engineering is an educational process, which must be performed with

transparency. The quality of transparency aims to enhance the collaboration of different

sorts of actors in each context, thus allowing for a wider participation in the process of

software construction.

 The text points out the already available knowledge that supports this statement,

and also points out blanks that must be better studied.

 The paper is organized as follows: Section 2 deals with the concept of

requirements evolution, which is the major misunderstanding; Section 3 details the other

7 misunderstandings; Section 4 reviews the concept of transparency; Section 5 outlines

the education metaphor. Section 6, the conclusion contextualizes the vision with other

11: Cadernos do IME : Série Informática : Vol. 48, Junho 2023

work, points out what and how there is a gain from the education metaphor with

transparency, and proposes that new trails and bridges be built.

2. 1 – One Major Misunderstanding

First, before starting this Section, let me be clear. The viewpoint of the paper is not new,

since several researchers in both software engineering and requirements engineering

have pointed out the fact that requirements evolve. However, overall, this under-

standing is not widespread.

 In The Neverending Story [Ende 1997], the medallion has the power to grant

wishes. Portrayed in Wolfgang Petersen’s movie [NeverEnding 1984] as two engulfing

snakes, the medallion gives the idea of an infinite loop, so it portrays the idea that the

story never ends. As the medallion has the power to grant wishes, who possess it may

alter the state of the world, inventing a new story. However, the novel [Ende 1997]

entails that the new story has only the owner of the medallion as its creator. So, at the

time of creation of a new story, it will be as the creator wishes.

 In Inception [Inception 2010], Christopher Nolan proposes that a new story

could be created in someone dream, but in Nolan’s conception, the plot of the story

could be challenged by other participants of the dream that may come from one’s

unconscious or from other joint dreamers. Nolan’s script touches issues that the field of

Consciousness [JournalofConsciounessStudies 2022] has been concerned. A designed

dream in Nolan’s conception is an infinite space where a virtual world may be brought

up. Differently from Ende [End 1997], Nolan [Inception 2010] does take in account

conflicts in the proposition of a new story.

 So, what those two works have to do with requirements evolution? If you

believe that requirements is a story to be enacted by a machine, you have to consider

that it could be rewritten as long as the writer wishes; like a new wish to the medallion.

On the other hand, a new story delivered as a dream [Inception 2010] could also be

written and rewritten as one wishes. However, in Inception [Inception 2010], you must

be aware that, in the new story, characters may behave as they wish – if you dream with

others, or if the dreamer, unconscious, act in an unforeseen way –, this is of particular

interest for being aware of software intruders.

 Using the story metaphor, a requirements artifact may be rewritten several times

[Ende 1997], and the characters of the story may have behaviors different than the ones

planned for them, and other writers could interfere in the story. In the worst case, with

all the unplanned behaviors and with interference from others, the complexity of the

resulting story is unbounded.

 Welcome to reality. So, if the discipline of requirements engineering fails to see

that the requirements artifact will change; problems will arise. The point is not when it

will change, but that it will change. Lehman’s definition of an E-type software states

that it addresses a problem in the real world and knowledge about them cannot be

absolute or complete [Lehman 1995]. The characterization of an E-type software has led

to the Lehman’s laws of software evolution [Lehman and Ramil 2001], which portray

software as a changing artifact. Berry [Berry 2002] points out that, as a feedback

system, an E-type software ends up changing its own requirements.

12: Cadernos do IME : Série Informática : Vol. 48, Junho 2023

 However, to build something, functions, and qualities [Chung and Leite 2009]

need to be stated. As such the requirements artifact should be stable enough for

planning the construction or thinking about its architecture. At this crucial point,

software engineering, overall, still lacks well established anchors. It is incredible that

the 1998 IEEE standards for requirements documents [IEEE Standards 2022]1, and the

version 3.0 (2014) of the Guide to the Software Engineering Body of Knowledge [IEEE

CS BofK 2022] are still tied to the phased oriented view of software construction. In the

case of the Guide, it has one chapter for software construction (Chapter 3) and one for

software maintenance (Chapter 5).

 Several authors and educators in software engineering preach that is possible,

with proper investment, to come up with a requirements artifact that is complete enough

to build the right product. As such, methods have been proposed to try to write the most

possible complete story before construction of the software. Many of the worst-case

stories of failure in software production come from this strategy. Of course, that this is

not new, different proposals for software processes came about, exactly, to answer this

point [Boehm 1988] [Basili and Turner 1975] [Smith 1991] [Beck 2000] [Ebert et al.

2016]. In particular, the introduction of the concept of agile development [Beck 2000],

and the practice of being even more agile, by shortening the time of deployment with

DevOps [Ebert et al. 2016].

 It is interesting that, in the early 80’s, Davis [Davis 1982] wrote about the

different strategies of requirements determination based on the available knowledge.

Davis recommends that full investment in writing a “complete” story be performed only

when there is enough knowledge about what is needed.

 Failure to understand that requirements evolve, and evolve in various times, due

to diverse types of changes, leads to negative impacts, as seen in Section 1 –

Introduction. The literature has accounts of the first (A), “critical problems in the final

product” [Risks Digest 2022], [Charette 2005] and the second (B), “waste of resources

in the production cycle” [Breitman et al. 1999] [Berry et al. 2010] problems. For the

other two problems (C) and (D), there is less literature.

 The “lack of confidence in software engineering” has been addressed in two

key-notes presentations in conferences; one was by James Coplien at the SBES 2001

and the other by Edward A. Lee at SOCA 2011. Be aware that there is a 10-year

distance among the two keynotes, what was understood of what they said, is that

software engineering failed in delivering what was expected: robust software. The point

is not a discussion if they are right or not, but there is a part of world that believe that

soft-ware engineering did not deliver what they thought it should. This is even worse,

with the emergence of artificial intelligence-based applications, which are commonly

referred as “algorithms” instead of “software”.

 By the same token the “lack of confidence in requirements engineering” is the

feeling shared by some, that requirements engineering does not fullfil what it promised.

Even being more than fifteen years old, the WER 20062 panel is representative. One

participant at this WER edition, Suzana Oliveira, a practitioner, mentioned the term

1 Reaffirmed in 2009.

2 https://web.archive.org/web/20061106180520/http://www.ime.uerj.br:80/~vera/WER06/

13: Cadernos do IME : Série Informática : Vol. 48, Junho 2023

“piloto de word” (Portuguese), which means “word driver (user),” in the sense of one’s

who uses word as the main tool for work. She reported that the sentence is used by

implementers, coders, who disregard the job of those who write documents. Others

complain about the time and volume of documents produced, which, sometimes, are not

used when coding is altered, because, for instance, of the lack of proper traceability.

There are also complaints that the requirements produced, although taking time and

resources, did not tackle, for instance non-functional requirements. In particular, the

case of non-functional requirements which are still overlooked by industrial practice

[Habibullah and Horkoff 2021]. Again, promises not delivered. My conclusion is that

the lack of understanding of software construction as an evolving process leads for such

undesirable situations.

 Back in 1997, the concept of requirements baseline [Leite et al. 1997] addressed

the issue of evolution or co-evolution. The idea is centered upon a baseline as a

reference, which is in constant evolution. Such an idea requires a powerful

configuration manager that works addressing versions both at maintenance time with

versioning (meaning the act process of the PDCA3 cycle) and the development time

with configuration of parts (meaning the do process of the PDCA cycle). To enact such

a baseline, both versioning and configuration: intertwine through time, and use traces

among versions as well as among parts (components). The crosscutting of those traces

requires a sound implementation of the baseline configurator.

3. + 7 - The Other Seven Misunderstandings

Besides the failure with respect to evolution, other seven misunderstandings contribute

to the four negative impacts seen at the Introduction. Below, each one of the seven

misunderstandings is detailed.

3.1. Context

Early works on requirements relied on specifications, which, in general, did not

consider the representation for context information. However, this failure of dealing

with context has been being dealt by interdisciplinary communities, as in the Springer

CONTEXT Series [Akman et al. 2001] [Bella and Bouquet 2019].

 Others do not mention the notion of Universe of Discourse, which was coined in

the field of database and reflects the context where the data will interact. Some work

just faintly mentions the world outside of a software system, like for instance: the notion

of interface brought up by use cases, while the concern is the interface of the software

system and not its environment.

 Jackson [Jackson 2006] specifically noticed this problem and proposed the use

of what he named “Problem Domain”. The name chosen by Jackson is not the best one,

since it makes a confusion with the concept of Domain Knowledge, which may crosscut

several environments. However, Jackson provided a clear description that there is a

world, part of the real world, which contextualizes requirements to be fulfilled by a

machine, composed of hardware and software.

3 PDCA was made popular by Dr. W. Edwards Deming, who is considered by many to be the father of

modern quality control; however, he always referred to it as the "Shewhart cycle".” (PDCA entry in

Wikipedia)

14: Cadernos do IME : Série Informática : Vol. 48, Junho 2023

3.2. Intertwining of Design Levels

When dealing with complex systems with distinct levels of abstractions, sometimes, the

design of one system is the definition of another system that will have to be designed.

For instance, when designing a braking system for a car, engineers produce a design

which will be used as definition for the construction of its software part. Maher [Maher

1990] uses the idea of design formulation, design synthesis and design evaluation and

mentions their recursive interaction, which is a way of dealing with distinct abstract

design levels.

 This intertwining of distinct levels of abstraction [Kramer 2007] does generate

much confusion, mainly when the context is the staged software process. It is interesting

to note that the i* language [Yu 1994] is one of the very few requirements languages

that explicitly supports this intertwining at a fine grain. One goal can be refined by tasks

and a task can be decomposed into goals.

Figura 1. i* distinct levels of abstraction

 In i*, the refinement of a goal into tasks, uses the means–end relationship, which

is not a decomposition with an AND semantics, but a refinement based on the OR/XOR

semantics. As in the example of Figure 1, the more abstract goal is “Article be

Reviewed”, which is an end, which has a means the task: “Review Article”. It happens

that “Review Article” is yet at a level of abstraction that needs that different goals be

accomplished, such as the softgoals: “Just in Time” and “Good”; as well as the goals:

“Article be reviewed” and “Review be Completed”. As such, we have distinct levels of

abstraction in the intertwining of goals and tasks, keeping in mind that a task is a mean

to achieve a goal, so it is less abstract.

 Notwithstanding, this is one of the semantics that is hard to get from the

language, and several papers reporting on i* modeling do not use this as intended by the

i* inventor [Yu 1994]. In i* the means-end relationship is crucial to bring variability to

the requirements. This difficulty led to a variation of the language [Dalpiaz et al 2016]

in its version 2.0. This move made it easier the use of i* but has the burden of loosing

the capability of intertwining different abstract design levels.

15: Cadernos do IME : Série Informática : Vol. 48, Junho 2023

3.3. Formalization

No one disagree of the need for formal descriptions. Fighting ambiguity [Berry and

Kamsties 2004] and being able to automate a give description is central to the effort of

requirements, however, let’s look at this example given by Jackson and Zave [Zave and

Jackson 1997].

 "Able: Two important basic types are student and course. There is also a binary

relation enrolled. If types and relations are formalized as predicates, then: s c

(enrolled(s, c) =>student(s) course(c)).

Baker: Do only students enroll in courses? I don’t think that’s true.

Able: But that’s what I mean by student!” [Zave and Jackson 1997].

 They use this example to stress one of the dark corners of requirements

engineering, which is grounding formal representations in reality. So, without a proper

ontology [Breitman and Leite 2003] [Antonelli et al. 2012] to ground terms,

formalization is not delivering what is promised. Several proposals based on formal

descriptions leave open the grounding of terms.

 Another important issue about formalization is the representation of qualities, or

non-functional requirements. Chung et al. [Chung et al. 2000] proposed the use of

softgoals to stand for qualities, as seen in Figure 1. The term was well chosen, given

that qualities/softgoals are not satisfied but satisficed. Satisficing was a term coined by

Hebert Simon [Simon 1982] is his work on behaviorism to acknowledge the fact that

there are situations were optimal solutions are not attainable. The use of the term in

requirements engineering is proper, since achieving a consensus over ways of achieving

a quality is not clear cut among stakeholders.

3.4. Code is King

Over and over, we read and discuss requirements without realizing that by the end of the

day, there will be running code. The phased view of software engineering has created an

unnecessary gap from requirements to code. The work of Beck [Beck 2000] made agile

development widely accepted [Hoda et al.], bringing requirements close to code. The

“on-site customer” practice [Beck 2000] is key towards reducing the code-requirements

distance. This is being brought to another dimension with the concept of DevOps [Ebert

2016]. An important contribution to bridging this gap, is the increasing role of Open

Software [do Prado Leite 2018].

 On the other hand, the work in requirements monitoring [Fickas and Feather

1995] [Lemos et. al. 2013] is paying attention to the problem, by providing a way to

compare, at running time, if requirements are being met. In 1988, Bill Curtis et al.

published a study that showed the organizational distance from customers and coders,

and how this has impacted the quality of the process [Curtis et al. 1988].

3.5. Models

Why are models needed? The answer is because with models [Mylopoulos 1988] it is

possible to look ahead in the sense that analysis be performed, which makes possible to

preview how an artifact will behave without having to produce it. Models are a key

element in engineering design, and they are now supported by a variety of software that

16: Cadernos do IME : Série Informática : Vol. 48, Junho 2023

help the engineer in designing the model and in analyzing them. General products, like

Mathematica [Wolfram 2022] and specific ones, such as the products by ANSYS

[Ansys 2022] are being used by thousands of engineers.

 However, in software engineering, in general, and in requirements engineering

therefore, some misunderstand the concept of models and rely on pictures, which may

or may not explain what is intended. An instance of this is the reliance on so–called

UML models, which in general are more concerned on syntax details of arrows and

boxes instead of providing a platform for analysis and simulation like the engineering

models do. Notwithstanding, model analysis is provided by both academia [Jackson

2022] and industry [IBM Rational 2022].

 On top of that, there is a clear misunderstanding of the word “analysis” in

general [Leite 2005]. The word is still commonly used to mean requirements elicitation,

instead of the meaning engineering uses, that is ways of confirming the correctness of

the model. It is proper to use the “analysis” term in its strict sense, given that the

requirements process is composed of four main inner processes: elicitation, modeling,

analysis, and managing. In analysis, V&V (verification and validation) strategies

provide the requirements engineer with support to achieve a quality construction

process.

3.6. The Political Game

The understanding that the RE process follows a constructionist perspective [Ramos et

al. 2005], in which knowledge is created by a social process with an interaction with the

environment, puts in evidence the role of stakeholders’ emotions beyond the usual

perspective of functional, structural, and economic RE aspects. Looking from the lens

of political ecology [Bergman et al. 2002], the RE process is a political decision

process, where the specification must be agreed–on through the enactment of

organizational power, thus requiring political techniques to address the solution–

problem space both technically as politically. Recognizing the political game, a

proposal of a framework [Milne and Maiden 2012] points out a RE oriented structure

to: describe power, diagnose power, and exercise power.

 However, focusing on just human beings as the providers of information as to

base the elicitation is a faulty procedure. Since one of the first steps in requirements

engineering is trying to identify the information sources [Leite et al. 2007], from which

the knowledge needed to construct the models will be elicited, usually there is a central

focus on humans as the primary source. It happens that information sources are not only

human beings, but there is also a plethora of information sources ranging, from laws,

environment, hardware, books, regulation, and software.

 It is important to mention the increasing attention to the importance of legal

compliance [Engiel et al. 2017], which reflects societal concerns [Europa 2022] with

software.

 For instance, suppose you need requirements for updating a set of new sensors

on the control of lighting. Information sources will be humans that desire to explore

new capabilities of the sensors, but also the existing software, the environment where

the sensors will be, the software that the vendor supplies, and so on. However, what

seems to be a crucial point, not always, completely, understood, is that in the design or

re-design of a system, there will be different interests at play, and it is not just a matter

17: Cadernos do IME : Série Informática : Vol. 48, Junho 2023

of understanding that there are different viewpoints [Leite 1996] but being able to

negotiate these different opinions [Jureta 2009] as to address the solution–problem

space both technically as politically.

3.7. Percival’s Quest

As stressed in Section 2, above, requirements evolve and co-evolve with software

production. Thus, it is a mistake to say that the requirements is complete, due to the

notion of completeness fallacy [Arango and Freeman 1988], which is: the requirements

is inherently incomplete in the context of E-type software [Lehman 1995].

 However, several books and articles persist in claiming that a requirements

document must be complete. Are they wrong? No. Despite the completeness fallacy,

keep in mind: a requirements document should be socially acceptable by the

stakeholders, as the source for answers to questions about the software product.

 The completeness, in the requirements engineering sense, is partial but should be

sufficient. This is a hard–to–understand concept, for those who like to have all the

semantics settled upfront.

 It is also the case that there is literature demanding that a requirements document

be consistent up front. However, the requirements engineering research community has

discovered that not only it is infeasible to maintain consistency at all times, but it may

be desirable to allow inconsistences in the requirements process before committing to a

agreed upon specification. The use of different viewpoints as mentioned above is an

example of the positive aspects of allowing inconsistencies in the process. Hadar et al.

[Hadar et al. 2019] examines the consistency conundrum in the realm of practitioners.

4. Transparency

Software is considered transparent if it makes the information it deals with transparent –

information transparency – and if it, itself, is transparent, that is it informs about itself,

how it works, what it does and why – process transparency–.

 “Transparency is a concept related to information disclosure, having been used

in different settings, mostly related to the empowering of citizens with regard to their

rights. The paper argues that, in order to implement transparency, society will need to

address how software deals with this concept.” [Leite and Cappelli 2010].

 In an effort improve our understanding of transparency, the software

transparency research group4 used the NFR framework [Chung et al. 2000] as basis for

representing the quality of transparency. The transparency framework posits that are 5

softgoals that help transparency: “Accessibility”, “Usability”, “Informativeness”,

“Understandability”, and “Auditability. Figure 2 shows the contribution of these

softgoals to transparency.

4 http://transparencia.inf.puc-rio.br/

18: Cadernos do IME : Série Informática : Vol. 48, Junho 2023

Figure 2 Contributions to Transparency

 Each of these 5 softgoals is in turn helped by other 28 softgoals, totaling 33

softgoals helping transparency. The semantics of the help, as defined by Chung et al.

[Chung et al. 2000], says that a softgoal contributes in a positive manner towards

another softgoal, which does not depend on the contribution, but benefits from it. So,

the contribution relation semantics should not be confused with decomposition or

specialization.

 How does transparency relate to requirements? To answer this question a quote

from Professor John Mylopoulos is key: Transparency is an interesting quality because

it makes it necessary to attach requirements models to software.

 As such, making requirements more transparent and attaching them to software

(code) contributes to (help) the overall quality of requirements, and makes explicit the

options taken by the requirements team, which helps avoiding the other 7

misunderstandings. As seen in Section 2, the requirements baseline concept considers

the software construction space a traceable space, see Figure 3 as in [Leite et al. 1997].

19: Cadernos do IME : Série Informática : Vol. 48, Junho 2023

Figure 3 The Software Construction Space [Leite et al 1997]

 Here, we should bear in mind that requirements always exist in a software. They

may be implicit or explicit (transparent), so even when only the source code is available,

we still have the requirements, although implicitly.

 Transparency is just one of the several social demanded qualities, as well as

safety, security, privacy., among others. Research in socially responsible software is an

open field, Cysneiros and Leite [Cysneiros and Leite 2020] have proposed to face it

from the point of view of non-functional requirements.

 The next section, Section 5, sums up the factors 1 + 7 that contributes to

requirements being a never-ending story. The concept of transparency and the metaphor

of education are used to posit what the community has learnt, but, yet, failed to

communicate to the world. Keep in mind: not only the artifact produced is prone to

evolution, but the field itself is a never-ending story.

5. Education

[Britannica 2022] gives a general definition of education, which is used in this paper.

“Education, discipline that is concerned with methods of teaching and learning in

schools or school-like environments as opposed to various nonformal and informal

means of socialization (e.g., rural development projects and education through parent-

20: Cadernos do IME : Série Informática : Vol. 48, Junho 2023

child relationships). Education can be thought of as the transmission of the values and

accumulated knowledge of a society.” [Britannica 2022]. The use of parts of this

definition, in the following paragraphs, is marked by the italic font.

 Education as a discipline has a long tradition. All major universities worldwide

have a department or a faculty of education. Thousands of conferences worldwide

discuss the theme, and a large number of books is available about the subject.

 The educational process must be at hand if the goal of getting someone educated

is to be achieved. If such a process could be summarized, it is proper to say that three

main actors are involved: producers of learning material, educators, and students, with

the goal that students be educated.

 In an education system, teachers use resources already available, learning

material, commonly books. Using books and other material, teachers instruct students

according to the common ground knowledge contained in these supporting artifacts. On

the other hand, other actors in the education process, usually called authors, handle the

writing of these supporting learning artifacts. Authors are those who cast the knowledge

into artifacts These authors are often educators, with profound knowledge of the

discipline in question. Teachers use a sort of different strategies as to pass the

knowledge from the supporting material to students, including procedures for feedback

control, also known as exams.

 Let’s try to argue about the similarity of an education process and a requirement

engineering process. In a requirement engineering process, the leading actors are the

requirements engineers. Requirements engineers must elicit knowledge, so they must

learn. Requirements engineers must model what they learned, such that others may use

this knowledge, so they must produce education artifacts. Requirements engineers must

communicate with software developers as to explain the artifacts produced, the

requirements specification, as such they should educate software developers about the

requirements.

 The similarity has limits, since should educate is on the limits of nonformal and

informal means of socialization among stakeholders5 in the software construction. The

point is that in the role of a requirements engineer, a stakeholder, an actor, should

handle the transmission of the values and accumulated knowledge to the other

stakeholders, even if one actor has more than one role.

 Let’s look at the task of eliciting the knowledge. If this metaphor is to be

followed, we are talking about someone that could author a book! So, there is a heavy

responsibility here, and that is why requirements elicitation is hard. Of course, that the

difficulty of the learning process is proportional to the difficulty of the universe of

discourse at hand, to the already available materials produced by others and to the

earlier experience of the learner, an actor on the role of a requirements engineer.

 How about modeling? Authoring an educational book is known to be difficult,

not only knowledge is needed, but a special skill as to provide the learner with good

explanations, examples, exercises. In these cases, of course, that quality control is

5 In a software project, stakeholders are a set of actors that sometimes may play more than one role

[Hadad 2017]. So, it is the case that in some cases the coder is the requirements engineer, or the

requirements is the user, or the coder is the user, and so on.

21: Cadernos do IME : Série Informática : Vol. 48, Junho 2023

fundamental. No one would like to learn from a book with defects. Usually book writers

use natural languages, and here is where the requirements engineer has an edge.

Modeling languages [Mylopoulos 1988] will allow the professional to write models that

could be analyzed, but again just knowing what was elicited isn’t enough, one must

master the representation language of the model6.

 Once the learning material is available, who will teach the students? Note that

here the role of the requirements engineer is reversed, that is, now the engineer is the

teacher. As such, the engineer is responsible for the transmission of the values and

accumulated knowledge to software developers and other interested stakeholders about

what the requirements is all about. In general, this part is missed in the requirements

engineering process, since there is a wide acceptance that the requirement specification

models produced are enough to explain what was learned. Here is where transparency

comes handy. If the requirements specification is built considering the transparency

quality, it will be easier to the stakeholders, even a citizen, to understand it. Note the use

of the word citizen, in the sense that transparency aims to reach out all kinds of

stakeholders.

 How about analysis? How do educators analyze their performance and that of

students? Exams is usually the feedback control for both students and educators, since

evaluation, in general, is based on scores obtained by students on standard exams, but

also they are a direct feedback to students on what has been learned. Requirements

engineers use analysis techniques to obtain feedback, some of these techniques involve

other stakeholders and are usually classified as validation techniques [Sarmiento et al.

2014], ones that feedback comes from the outside, but other type of techniques,

classified as verification techniques [Sebastián et al. 2017], makes it possible that

requirements engineers, by themselves, verify the written models. With respect to

feedback, the availability of representation languages and proper analysis techniques is

an edge to requirements engineers. However, these languages and analysis techniques

are still not as popular as needed, being seldom used by the software development

industry.

So, what is the purpose of using this similarity as a metaphor? What is new here? It is a

belief of this paper, that there are four major advantages of studying this metaphor in

more detail.

1) It makes clear that requirements engineering, as a field, and requirements

documents are a never-ending story. Education is about bringing knowledge

to the masses, and knowledge is being produced by research in a continuous

fashion.

2) Requirements engineering is hard, if a field as old as Education is still going

through revolutions, requirements engineering as a field has a lot to cover.

3) The metaphor makes it easier to see why transparency is important for

requirements. More participation on the understanding of requirements, the

better the requirements will be. This brings up the importance of

collaboration [do Prado Leite 2018] in producing requirements.

6 It is important to be aware that there is no software without requirements, even if only the code is

available. As said earlier the requirements may be implicit or explicit.

22: Cadernos do IME : Série Informática : Vol. 48, Junho 2023

4) The metaphor opens new ways to think about requirements engineering and to

learn from the Education field, which has been exploring similar quests for a

long time.

6. Conclusion

Let’s recap the purpose of this paper: stress that evolution is key to requirements

engineering, point out several factors that lead to problems in the production of

requirements as a software artifact, and the proposal of a metaphor with the field of

Education. The contribution relies on revising literature that deals with these identified

misunderstandings and on proposing a metaphor that helps the overall understanding of

the field, the profession, and of new research paths.

 This paper by its own classification, is a vision paper, holds several beliefs of the

author, which are justified by argumentation and, as such, is prone to bring discussions,

which is just the usual goal of scientific reports.

 Other work has been published discussing the area of Requirements Engineering

in general [Nuseibeh and Easterbrook 2000], [Jarke et al. 2011]. The work of Jarke et al.

[Jarke et al. 2011] is of special mention because it also points out some of the

misunderstandings listed above. In this paper the authors point out four new principles

that should give a north to Requirements Engineering, these principles are: “(1)

intertwining of requirements with implementation and organizational contexts, (2)

dynamic evolution of requirements, (3) emergence of architectures as a critical

stabilizing force, and (4) need to recognize unprecedented levels of design complexity.”

[Jarke et al. 2011].

 The paper has dealt with (1) in Context and Code is Key, dealt with (2) in 1,

dealt with (3) in Intertwining of Design Levels and in Models and dealt with (4) in The

Political Game. The paper adds to the discussion and to an overall comprehension of the

field, stressing its challenges vis a vis a comparison to the field of Education. Future

challenges are of varied shapes.

There is a folk story that goes like this: A Japanese factory was struggling to find out a

defect in the production of a fine mechanics product, but all the analysis performed by

the engineers has failed. Due to the persistent and continuous problem the management

resolved to involve all the employees in trying to solve the problem. As such, the

engineers prepared a concise paper explaining the problem, when it occurred, and what

was the consequence of the problem to the company. It happens that one person

working as a secretary found out that the times the problem occurred where exactly the

times that the fast train would pass by the factory. This was reported to the

management, who passed it to the engineers. At first, they did not think it was useful,

since the sensors were not detecting any discrepancies, but when they stop to look in

more detail, they found out, that yes, the fast trains were causing the problem.

 This story is used over and over to exemplify why sharing information is

beneficial if one wants to find problems. Open-source software development has been

profiting from this philosophy of more eyeballs, and some believe it is key to their

success.

23: Cadernos do IME : Série Informática : Vol. 48, Junho 2023

 As such, keeping transparency as a softgoal should provide benefits, as more and

more people will have access and can understand requirements. As argued, the better

exploration of the Education metaphor will lead to address the fact that requirements

engineers are not taught to function as communicators. Research could help by

providing ways that requirements engineers have techniques borrowed from Education

[Monsalve et al. 2015]. Improving communication, a key capability to educators, will

help the gap among the different stakeholders related to software. It goes without saying

that the metaphor is also applied to the education of requirements engineers, as new and

diverse ways of teaching the tricks of the trade are a challenge to requirements

engineering pedagogy [Portugal 2016].

Acknowledgement

The author thanks the partial support of CNPq and CAPES. Many thanks to the RE

Community at large, the IFIP 2.9 WG, PhD and Master collaborators, Co-Authors,

PUC-Rio, UERJ, University of Trento, University of Toronto, University of

Kaiserslautern, and University of California Irvine. Special acknowledgment to

Professor Daniel M. Berry for helping to improve this revised edition.

References

Leite, J.C.S.P. (2022). Requirements: The Never-Ending Story. In 25th WER22 -

Workshop on Requirements Engineering, WERpapers.

Brooks, F. P. (2009). 'A Science of Design' is a Misled and Misleading Goal’ In

Dagstuhl 08412 Workshop: Science of Design,

(http://drops.dagstuhl.de/opus/volltexte/2009/1976/)

Furtado, A. L. (1992). "Analogy by generalization—and the quest of the grail." ACM

Sigplan Notices 27-1

Ende, M., (1997). The Neverending Story, Dutton Juvenile; Revised edition.

NeverEnding (1984). https://en.wikipedia.org/wiki/The_NeverEnding_Story_(film)

Inception (2010). https://www.warnerbros.com/movies/inception

Journal of Consciousness Studies (2022). https://www.imprint.co.uk/product/jcs/

Lehman, M. M. (1995). Process improvement—the way forward. In International

Conference on Advanced Information Systems Engineering (pp. 1-11). Springer, Berlin,

Heidelberg

Lehman, M. M., & Ramil, J. F. (2001). Rules and tools for software evolution planning

and management. Annals of software engineering, 11(1), 15-44.

Berry, D. M. (2002). The inevitable pain of software development, including of extreme

programming, caused by requirements volatility. In Proceedings of the International

Workshop on Time-Constrained Requirements Engineering (TCRE), RE02 - IEEE Joint

International Conference on Requirements Engineering.

Chung, L., & Prado Leite, J. C. S. D. (2009). On non-functional requirements in

software engineering. In Conceptual modeling: Foundations and applications (pp. 363-

379). Springer, Berlin, Heidelberg.

IEEE Standards (2022). https://standards.ieee.org/ieee/830/1222/

24: Cadernos do IME : Série Informática : Vol. 48, Junho 2023

IEEE CS BofK (2022). https://www.computer.org/education/bodies-of-

knowledge/software-engineering

Boehm, B. W. (1988). A Spiral Model of Software Development and Enhancement.

IEEE Computer 21(5): 61-72

Basili, V.R., Turner, A. J. (1975). Iterative Enhancement: A Practical Technique for

Software Development. IEEE Trans. Software Eng. 1(4): 390-396 (1975)

Smith, M.F. (1991). Software Prototyping: Adoption, Practice and Management.

McGraw-Hill, London

Beck, K. (2000). Extreme Programming, Addison Wesley,

Ebert, C., Gallardo, G., Hernantes, J., & Serrano, N. (2016). DevOps. Ieee Software,

33(3), 94-100.

Davis, G. B. (1982). Strategies for Information Requirements Determination. IBM

Systems Journal 21(1): 4-30

The Risks Digest (2022). http://catless.ncl.ac.uk/Risks/

Charette, R.N. (2005). Why Software Fails In IEEE Spectrum

https://spectrum.ieee.org/why-software-fails

Breitman, K. K. ; Leite, J. C. S. P. ; Finkelstein, A. (1999). The World´s a Stage: A

Survey on Requirements Engineering using a Real-Life Case Study. Journal of the

Brazilian Computer Society, Brasil, v. 6, n. 1, p. 13-37

Berry, D. M., Czarnecki, K., Antkiewicz, M., & AbdElRazik, M. (2010). Requirements

determination is unstoppable: an experience report. In 2010 18th IEEE International

Requirements Engineering Conference (pp. 311-316).

Habibullah, K. M., & Horkoff, J. (2021). Non-functional requirements for machine

learning: understanding current use and challenges in industry. In IEEE RE Proc.. (pp.

13-23).

Leite, J.C.S.P.; Rossi, G. ; Balaguer, F. ; Maiorana, V. ; Kaplan, G. ; Hadad, G.;

Oliveros, A. (1997). Enhancing a requirements baseline with scenarios. Requirements

Engineering Journal, v. 2, n. 4, p. 184-198.

Akman, V., Bouquet, P., Thomason, R.H., Young, R.A. (2001). Modeling and Using

Context, In 3th International and Interdisciplinary Conference, CONTEXT, Proc.

Springer.

Bella, G & Bouquet (2019). Preface. In Proceedings of the Modeling and Context, 11th

Inter-national Conference and Interdisciplinary Conference. Springer, LNAI 11939.

Jackson, M. (2006). Some Basic Tenets of Description

http://mcs.open.ac.uk/mj665/SoSym06.pdf

Maher, M.L. (1990). Process Models for Design Synthesis. AI Magazine 11(4): 49-58

Kramer, J. (2007). Is Abstraction the Key to Computing? Communications of the ACM,

April 2007, Vol. 50 No. 4, Pages 36-42

Yu, E. (1994). Modeling strategic relationships for process reengineering. Dissertation,

University of Toronto, Graduate Department of Computer Science, pp 124.

25: Cadernos do IME : Série Informática : Vol. 48, Junho 2023

Dalpiaz, F., Franch, X., & Horkoff, J. (2016). istar 2.0 language guide. arXiv preprint

arXiv:1605.07767.

Berry, D. M., Kamsties, E. (2004). Ambiguity in requirements specification. In J. Leite

and J. Doorn, editors, Perspectives on Requirements Engineering, pp. 7–44. Kluwer,

2004.

Zave, P. and Jackson, M. (1997). Four dark corners of requirements engineering. ACM

Trans. Softw. Eng. Methodol. 6, 1 (1997), 1-30.

Breitman, K. K.; Leite, J. C. S. P. (2003). Ontology as a Requirements Engineering

Product. In: Proc. of the 11th IEEE RE, IEEE Computer Society Press, p. 309-319,

2003.

Antonelli, L., Rossi, G., do Prado Leite, J. C. S., & Oliveros, A. (2012). Deriving

requirements specifications from the application domain language captured by

Language Extended Lexicon. In In 15th WER12 - Workshop on Requirements

Engineering, WERpapers.

Chung L, Nixon B, Yu E, Mylopoulos J. (2000). Non-functional requirements in

software engineering. Springer – Kluwer.

Simon, H.A. (1982). The Sciences of the Artificial. MIT Press.

Hoda, R., Salleh, N., & Grundy, J. (2018). The rise and evolution of agile software

development. IEEE software, 35(5), 58-63.

do Prado Leite, J. C. S. (2018). The prevalence of code over models: Turning it around

with transparency. In IEEE 8th MoDRE, pp. 56-57

Fickas, S., & Feather, M. S. (1995). Requirements monitoring in dynamic

environments. In Proceedings of 1995 IEEE International Symposium on Requirements

Engineering (RE'95), pp. 140-147.

Lemos, R. et. al. (2013). Software engineering for self-adaptive systems: A second

research roadmap. In Software engineering for self-adaptive systems II. Springer,

Berlin, Heidelberg, 1-32.

Curtis, B., Krasner H., and Iscoe, N. (1988). A field study of the software design

process for large systems. Commun. ACM 31, 11, 1268-1287.

Mylopoulos, J. (1998). Information Modeling in the Time of the Revolution. Infor-

mation systems, 23(3-4), 127-155.

Wolfram (2022). https://www.wolfram.com/mathematica/

Ansys (2022). https://www.ansys.com/

Jackson, D. (2002). Alloy: a lightweight object modelling notation. ACM Trans. Softw.

Eng. Methodol. 11(2): 256-290

IBM Rational (2022). https://www.ibm.com/support/pages/ibm-rational-statemate-46

Leite, J.C.S.P. (2005). Understanding the word 'analysis' in the context of Requirements

Engineering. Journal of Computer Science & Technology, vol. 5, no. 2, p. 107.

Ramos, I., Berry, D. M., & Carvalho, J. Á. (2005). Requirements engineering for

organizational transformation. Information and Software Technology, 47(7), 479-495.

26: Cadernos do IME : Série Informática : Vol. 48, Junho 2023

Bergman, M., King, J. L., & Lyytinen, K. (2002). Large-scale requirements analysis

revisited: the need for understanding the political ecology of requirements engineering.

Requirements Engineering, 7(3), 152-171.

Milne, A., & Maiden, N. (2012). Power and politics in requirements engineering:

embracing the dark side? Requirements Engineering, 17(2), 83-98.

Leite, J.C.S.P, Moraes, E.A., Castro, C.E.P.S (2007). A Strategy for Information Source

Identification. WER 2007: 25-34

Engiel, P., Leite, J.C.S.P., & Mylopoulos, J. (2017). A tool-supported compliance

process for software systems. In IEEE 11th RCIS (pp. 66-76).

Europa (2022). https://ec.europa.eu/info/strategy/priorities-2019-2024/europe-fit-

digital-age/digital-markets-act-ensuring-fair-and-open-digital-markets_en#

Leite, J. C. S. D. P.: (1996). Viewpoints on viewpoints. In ISAW-2, Viewpoints' 96 on

SIGSOFT'96 Workshops, pp. 285-288

Jureta, I., Mylopoulos, J., Faulkner, S. (2009). Analysis of Multi-Party Agreement in

Requirements Validation. RE 2009: 57-66.

Arango, G., Freeman, P. (1988). Application of Artificial Intelligence, ACM Sigosoft

Notes, Vol. 13, N.1,32-38.

Hadar, I., Zamansky, A., & Berry, D. M. (2019). The inconsistency between theory and

prac-tice in managing inconsistency in requirements engineering. Empirical Software

Engineering, 24(6), 3972-4005.

Leite, J.C.S.P., Cappelli, C. (2010). Software Transparency. Business & Information

Systems Engineering 2(3).

Cysneiros, L. M., & do Prado Leite, J. C. S. (2020). Non-functional requirements

orienting the development of socially responsible software. In Enterprise, Business-

Process and Information Systems Modeling (pp. 335-342). Springer, Cham.

Britannica (2022). https://www.britannica.com/topic/education

Hadad, G. D. S., Doorn, J. H., & do Prado Leite, J. C. S. (2017). Requirements

authorship: a family process pattern. In 2017 IEEE 25th International Requirements

Engineering Conference Workshops (REW), pp. 248-251.

Sarmiento, E., do Prado Leite, J. C. S., & Almentero, E. (2014). C&L: Generating

model based test cases from natural language requirements descriptions. In 2014 IEEE

1st RET

Sebastián, A., Hadad, G.D.S., Robledo, E. (2017). Inspección centrada en Omisiones y

Am-bigüedades de un Modelo Léxico. In WER, 2017.

https://dblp.org/rec/conf/wer/SebastianHR17

Nuseibeh, B., & Easterbrook, S. (2000). Requirements engineering: a roadmap. In

Proceed-ings of the Conference on the Future of Software Engineering (pp. 35-46).

Jarke, M., Loucopoulos, P., Lyytinen, K., Mylopoulos, J., Robinson, W.N. (2011). The

brave new world of design requirements. Inf. Syst. 36(7): 992-1008

27: Cadernos do IME : Série Informática : Vol. 48, Junho 2023

Monsalve, E.S., Sampaio do Prado Leite J.C., and Werneck V.M.B. (2015).

Transparently Teaching in the Context of Game-based Learning: the Case of SimulES-

W. In IEEE/ACM 37th IEEE International Conference on Software Engineering, pp.

343-352.

Portugal, R. L. Q., Engiel, P., Pivatelli, J., & do Prado Leite, J. C. S. (2016). Facing the

challenges of teaching requirements engineering. In Proceedings of the 38th

International Conference on Software Engineering Companion pp. 461-470.

