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Abstract. Trivially perfect graphs are graphs for which the stability number
equals the number of (maximal) cliques, for every induced subgraph. Trivially
perfect graphs are equivalent to the {Cy, Py}-free graphs, and to the compara-
bility graphs orders whose Hasse diagram is a rooted tree. We survey classical
and recent results on this fascinating and highly non-trivial graph family.

1. Dagstuhl, February 9, 2014

Trivial perfect graphs are characterized as being the {C}, P, }-free graphs—so stated the
young speaker at the opening lecture of the Dagstuhl workshop Graph Modification Prob-
lems. A hand went up, “Why are they called trivial perfect graphs?” A smile came to my
face. I was glad someone asked. I said nothing, but would answer two days later.

2. Paris 1977

Let mc(G) denote the number of maximal cliques of an undirected graph G, and let
a(@) be the stability number, that is, the cardinality of the largest set of independent set.
Clearly,

a(G) < me(G) (1)

since there must be a(G) distinct cliques, each one containing a different member of a
maximum stable set. [Buneman 1974] had falsely stated that equality holds in (1) for
chordal graphs. In fact, equality is not even true for a chordless path P,(n > 4), which
lead me to the question, “For which graphs is there equality in (1)?” Unfortunately, one
cannot expect to discover much about the structure of such graphs, since we can hide all
the structure of GG as follows:

Let Cy,C5,...,C,, be the maximal cliques of G, and add m new vertices
X1, %2, ..., Ty connecting x; to each vertex of C; to form an augmented graph H. Clearly,
a(H) = mc(H) = m thus satisfying (1) with equality, yet any structure in G is totally
lost. For this reason, in my paper [Golumbic 1978], I added a hereditary condition to
define something structurally interesting.

Definition: A graph G = (V, E) is trivially perfect if a(Gx) = mc(Gx) for all induced
subgraphs G x of G, (X C V).

Here is a quote from that paper. “This name was chosen since it is trivial to show that
such a graph is perfect.”

Definition: A graph G = (V, E) is perfect if a(G x) = k(Gx) for all induced subgraphs
Gx of G, (X C V), where x(G) denotes the size of a minimum clique cover of G.
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It is always the case that a maximum stable set number is smaller than or equal to the
size of a minimum clique cover, and trivially, x(G) is at most mc(G). In other words,
a(Gx) < k(Gx) < me(Gx), so if the first term equals the last, then they are all equal,
and G is perfect.

3. Structural characterizations of trivially perfect graphs

The structural characterizations that connect trivially perfect graphs with the rest of the
graph theory world are repeated here.

Theorem 1. Let G = (V, E) be an undirected graph. The following statements are
equivalent:

(1) G is trivially perfect;

(i1) G contains no induced subgraph isomorphic to C or Py;

(iii) G has a transitive orientation whose Hasse diagram is a forest of rooted trees;

(iv) G can be formed by repeatedly (1) adding a new isolated vertex, (2) adding a
new vertex that is adjacent to all old vertices, or (3) taking the disjoint union of two such
graphs;

(v)if a,b,c,d € V are distinct vertices satisfying ab, bc, cd € E, then either ac € E
orbd € E;

(vi) each connected induced subgraph of GG has a universal vertex.

A proof of (i) < (ii) can be found in [Golumbic 1978], and it is a simple exercise
to show (ii) < (v). [Wolk 1965] proved that a connected graph satisfying (v), which he
called a D-graph, has at least one universal vertex—that is, (v) = (vi). He then used
this to show by induction that (vi) = (iii). A simple proof of the implication (iii) =
(v) is in [Wolk 1962]. Finally, it is straightforward to show the equivalence (iv) < (vi).
[Ma, Wallis, and Wu 1989] used the term quasi-threshold graphs for graphs satisfying
(iv) since G is a threshold graph (no induced C'; or P, or 2K5) precisely when G and its
complement G are trivial perfect. In a recent paper, [Rubio-Montiel 2015] characterizes
the trivially perfect graphs in terms of vertex-coloring.

It should be pointed out that the property of having a transitive orienta-
tion whose Hasse diagram is a tree is not a comparability invariant. An exam-
ple of this is the following graph on 5 vertices and 8 edges: (1) one TRO is
ab, ac, ad, ae, be, bd, be, de whose Hasse diagram rooted at a is ab, bc, bd, de, but (2) an-
other TRO is ab, ac, ad, ae, cb, db, de, eb whose Hasse diagram contains a cycle, namely,
ac, ad, cb, de, eb.

[Wolk 1965] also observed that the complement of a trivially perfect graph is a
comparability graph. This implies that they are a subclass of both permutation graphs
and interval graphs. Armed with the characterizations in Theorem 1, it is easy to see that
we have the mini-hierarchy in Figure 1. See [Golumbic 2021] for further definitions and
references.

4. Algorithmic aspects of trivially perfect graphs

Recognition. [Ma, Wallis, and Wu 1989] studied algorithmic aspects using characteri-
zations of Theorem 1 giving an O(|V'|| E|)-time algorithm for the recognition problem.
Subsequently, [Yan, Chen, and Chang 1996] improved the complexity of recognition by
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Figure 1. A hierarchy of graph classes

demonstrating a linear-time algorithm. [Chu 2008] then presented a simple linear time
algorithm for recognizing trivially perfect graphs, based on lexicographic breadth-first
search. Whenever the LexBFS algorithm removes a vertex v from the first set on its
queue, the algorithm checks that all remaining neighbors of v belong to the same set; if
not, one of the forbidden induced subgraphs can be constructed from v. If this check suc-
ceeds for every v, then the graph is trivially perfect. The algorithm can also be modified
to test whether a graph is the complement graph of a trivially perfect graph, in linear time.
See [Golumbic 2004, 2021] for references to other applications of LexBFS.

Graph sandwich. For a graph class C, the graph sandwich problem (GSP) asks whether,
given a set of vertices V, a set of mandatory edges F', and a set of optional edges F°,
is there a graph H = (V, E) in C such that ' C E C E' U E°? [Alvarado, Dantas,
Rautenbach 2019] have recently shown that the trivially perfect graph sandwich problem
can be solved in polynomial-time. For the other graph classes in Figure 1, in a series of
papers in the 1990s, Golumbic, Kaplan and Shamir proved that the GSP is NP-complete
for chordal, strongly chordal, permutation, comparability, and cocomparability graphs,
but is polynomial for cographs and threshold graphs.

Square root. A graph H is a square root of a graph G if two vertices are adjacent in G if
and only if they are at distance one or two in H. This is usually denoted H? = G. On the
one hand, computing a square root of a given graph G is NP-hard, even when the input
graph G is restricted to be chordal. On the other hand, [Milani¢ and Schaudt 2013] have
shown that computing a square root can be done in linear time for the class of trivially
perfect graphs. They further investigated the problem of determining whether there exists
a split graph H such that H? = G. They prove this split square root problem can be
solved in linear time even for the case where G is chordal, and hence for trivially perfect
graphs too.

5. Jayme Szwarcfiter

Several papers authored by Jayme Szwarcfiter and colleagues refer to trivially perfect
graphs. In [Dobson, Gutierrez, and Szwarcfiter 2004, 2006], the authors study treelike
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comparability graphs, that is, comparability graphs of posets whose Hasse diagram is a
tree (not necessarily a rooted tree). They give necessary and sufficient conditions that a
prime comparability graph must satisfy for being a treelike comparability graph. They
also provide a characterization of treelike comparability graphs based on modular decom-
position.

Other early works on comparability graphs whose Hasse diagram is a tree are
[Arditti 1975] and [Atkinson 1990]. [Cornelsen and Di Stefano 2004, 2009] give another
characterization of treelike comparability graphs as being distance hereditary with a spe-
cial treelike orientation of its split decomposition, and provide a linear-time recognition
algorithm. They also characterize treelike permutation graphs.

Jayme Luiz Szwarcfiter delivered the 2nd Annual Uri Natan Peled Memorial Lec-
ture at the Haifa Workshop on Interdisciplinary Applications of Graph Theory, Combi-
natorics and Algorithms in May 2011. He spoke on the topic, “Arboricity, A-index and
dynamic graph algorithms” [Lin, Soulignac, Szwarcfiter 2012]. In this paper, they pro-
posed a data structure for manipulating graphs, called /-graph, which is particularly suited
for designing dynamic algorithms. Using this data structure, they solve problems such as
listing the cliques of a given size, recognizing diamond-free graphs, and finding simple,
simplicial and dominated vertices. They also design new static algorithms for recognizing
strongly chordal graphs, an important superclass of trivially perfect graphs.

The clique graph K(G) of a graph G is the intersection graph of the maximal
cliques of GG. Given integers my, ..., my, the weighted clique graph of G is the clique
graph in which there is a weight assigned to each complete set X of size m; of (G, for
each i = 1,..., k. This weight equals the cardinality of the intersection of the cliques of
G corresponding to X.

In [Bonomo and Szwarcfiter 2014], the authors characterize weighted clique
graphs in a manner similar to that of Roberts and Spencer’s for clique graphs. They fur-
ther characterize several classical graph classes in terms of their weighted clique graphs,
providing a common framework for describing some different well-known classes of
graphs. These include hereditary clique-Helly graphs, split graphs, chordal graphs, in-
terval graphs, proper interval graphs, trivially perfect graphs, line graphs, among others.

6. Further generalizations of trivially perfect graphs

Motivated by Wolk’s characterization of trivially perfect graphs in Theorem 1(v), [Jung
1978] defined a more general family as follows:

Definition: A graph G is called a D*-graph if whenever a, b, c,d € V are distinct vertices
satisfying ab, bc, cd € F, then either ac € Forbd € Forad € E.

In his paper, Jung proved that the larger class of D*-graphs is also a class of
comparability graphs and the involved posets are called multitrees, whose elementary
properties are also studied.

[Johnson and McMorris 1982] strengthen the condition of Theorem 1(v) by defin-
ing a graph G to be a strong D-graph if whenever a,b,c,d € V are distinct vertices
satisfying ab, bc, cd € E, then both ac € E and bd € E. They show that GG is a strong
D-graph if and only if it is the union of fans and chains. Similarly, they define and char-
acterize a notion of strong D*-graphs.
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Further recommended reading is [Tsujie 2018] on the relation between trivially
perfect graphs and the chromatic symmetric function of a graph [Stanley 1995, 1998],
and [Gurski, Komander, and Rehs 2021] on directed trivially perfect graphs.

7. References

Alvarado, J. D., Dantas, S. and Rautenbach, D. (2019).
Sandwiches missing two ingredients of order four.
Annals of Operations Research 280, 47-63.

Arditti, Jean-Claude (1975).
Graphes de comparabilite d’arbres et d’arborescences.
These d’Etat, Publ. Math. Orsay No. 127-7531.

Atkinson, M. D. (1990).
On computing the number of linear extensions of a tree. Order 7, 23-25.

Bonomo, Flavia and Szwarcfiter, Jayme L. (2014).
Characterization of classical graph classes by weighted clique graphs.
Discrete Applied Math. 165, 83-95.

Buneman, P. (1974).
A characterization of rigid circuit graphs. Discrete Math. 9, 205-212.

Chu, Frank Pok Man (2008).
A simple linear time certifying LBFS-based algorithm for recognizing trivially
perfect graphs and their complements. Information Processing Letters 107, 7-12.

Cornelsen, S. and Di Stefano, G. (2004).
Treelike comparability graphs: characterization, recognition, and applications.
Proc. 30th Internat. Workshop on Graph-Theoretic Concepts in Computer Science,
(WG 2004), Lecture Notes in Computer Science 3353, Springer, pp. 46-57.

Cornelsen, S. and Di Stefano, G. (2009).
Treelike comparability graphs. Discrete Applied Math. 157, 1711-1722.

Dobson, M. P., Gutierrez, M. and Szwarcfiter, J. L. (2004).
Treelike comparability graphs.
Electronic Notes in Discrete Math. 18, 97-102.

Dobson, M. P., Gutierrez, M. and Szwarcfiter, J. L. (2006).
Characterizations of treelike comparability graphs.
Congressus Numerantium 182, 23-32.

Golumbic, Martin Charles (1978).
Trivially perfect graphs. Discrete Math. 24, 105-107.

Golumbic, Martin Charles (2004).
Algorithmic Graph Theory and Perfect Graphs, Second edition,
Annals of Discrete Math. 57, Elsevier.

Golumbic, Martin Charles (2021).
Chordal graphs. Chapter 6, in Topics in Algorithmic Graph Theory
(L. W. Beineki, M. C. Golumbic, and R. J. Wilson, eds.),
Cambridge University Press, pp. 130-151.

44



Cadernos do IME : Série Informatica : Vol. 47, Outubro 2022

Gurski, F., Komander, D. and Rehs, C. (2021).
On characterizations for subclasses of directed co-graphs.
J. of Combinatorial Optimization 41, 234-266.

Johnson, C. S. and McMorris, F. R. (1982).
A note on two comparability graphs. Mathematica Slovaca 32, 61-62.

Jung, H. A. (1978).
On a class of posets and the corresponding comparability graphs.
J. of Combinatorial Theory B 24, 125-133.

Lin, M. L., Soulignac, F. J., and Szwarcfiter, J. L. (2012).
Arboricity, h-index, and dynamic algorithms.
Theoretical Computer Science 426-427, 75-90.

Ma, S., Wallis, W.D. and Wu, J. (1989).
Optimization problems on quasi-threshold graphs.
J. Combin. Inform. System. Sci. 14, 105-110.

Milani¢, Martin and Schaudt, Oliver (2013).
Computing square roots of trivially perfect and threshold graphs,
Discrete Applied Math. 161, 1538—1545.

Rubio-Montiel, Christian (2015).
A new characterization of trivially perfect graphs.
Electronic Journal of Graph Theory and Applications 3, 22-26.

Stanley, Richard P. (1995).
A symmetric function generalization of the chromatic polynomial of a graph.
Adv. Math. 111, 166—-194.

Stanley, Richard P. (1998).
Graph colorings and related symmetric functions: ideas and applications.
A description of results, interesting applications, and notable open problems.
Discrete Math. 193, 267-286.

Tsujie, S. (2018).
The chromatic symmetric functions of trivially perfect graphs and cographs.
Graphs and Combinatorics 34, 1037-1048.

Wolk, E. S. (1962).
The comparability graph of a tree.
Proc. American Math. Society 13, 789-795.

Wolk, E. S. (1965).
A note on the comparability graph of a tree. Proc. American Math. Society 16, 17-20.

Yan, Jing-Ho; Chen, Jer-Jeong; Chang, Gerard J. (1996).
Quasi-threshold graphs. Discrete Applied Math. 69, 247-255.

45



