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Abstract. In this paper we survey some of the contributions of Professor Jayme
Luiz Szwarcfiter in the area of graph convexity, in celebration of his 80th birth-
day.

1. Introduction
There are many important contributions by Professor Jayme Luiz Szwarcfiter in the area
of combinatorics, graph theory, and computational complexity. Through collaborations,
co-supervision of master’s and doctoral degrees and, most importantly, under his super-
vision, the authors worked and published together with professor Jayme several results in
the area of convexity in graphs.

For a graph G, a set C of subsets of V (G) is a convexity in G if (i) ∅, V (G) ∈ C
and (ii) C is closed under intersection. Each element of C is called a convex set. The
convex hull HC(S) of a subset S ⊆ V (G) is the smallest convex set containing S.

With few exceptions [Lima et al. 2018], most of graph the convexities studied so
far are defined by a set P of paths (c.f. [Thompson et al. 2020]). In this case, a subset
C ∈ V (G) is convex precisely when C contains all the vertices belonging to the paths of
P whose extreme vertices are also in C.

The geodetic convexity considers P as the set of all shortest
paths in G [Cáceres et al. 2006, Dourado et al. 2016b, Dourado et al. 2010a,
Everett and Seidman 1985]. In the monophonic convexity [Costa et al. 2015,
Dourado et al. 2010c, Duchet 1988] P is the set of all induced paths. The tri-
angle path convexity [Changat and Mathew 1999, Dourado and Sampaio 2016]
and P3-convexity consider P as the set of all paths with three vertices
[Centeno et al. 2013, Centeno et al. 2011a, Coelho et al. 2014a, Dourado et al. 2013d].
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The P ∗
3 -convexity considers P as the set of all induced paths with three ver-

tices [Araújo et al. 2018]. When C is the geodetic (resp. monophonic, P3, P ∗
3 )

convexity, we write g (resp. m, P3, P ∗
3 ) instead of C.

One can say that Jayme is a pioneer among Brazilian researchers in the area of
convexity in graphs and, when restricted to complexity aspects, one of the pioneers in
the world. The first publication on the theme has appeared in 2006 with a study on the
geodetic convexity [Dourado et al. 2006]. Since then, Professor Jayme counts more than
30 published papers dealing with convexity in graphs, besides supervising dozens of stu-
dents on the subject.

Along with his coauthors, Jayme investigated several convexity invariants, in dif-
ferent convexities, obtaining results of complexity, bounds, and characterizations, which
will be briefly summarize in the next sections. Although not exhaustive, we hope this
selection of results illustrates the immense impact of Jayme in this field.

2. Hull number

Let G be a graph and S ⊆ V (G). If HC(S) = V (G) then S is a hull set. The cardinality
hC(G) of the smallest hull set in G is called the hull number of G. Being a central concept
in the area, the hull number was considered in an expressive number of Jayme’s papers.

In [Dourado et al. 2009], the hull number of graph under in the geodetic convexity
was studied. It was shown that deciding whether hg(G) ≤ k is NP-complete. On the
other hand, the authors presented polynomial-time algorithms for computing hg(G) when
G is a unit interval graph, a cograph, or a split graph. In [Dourado et al. 2010a] the
same parameter was considered for triangle-free graphs, where bounds were presented
considering restrictions of diameter, girth, and degree. Results in graph products were
considered in [Coelho et al. 2022] where it was shown that hg(GG) can be determined in
polynomial time, for the complementary prism GG of any graph G.

Contributions were also made considering the P3 convexity. Polynomial-
time algorithms were presented for hP3(G) on trees and, more generally, chordal
graphs [Centeno et al. 2011b]. Connections between minimal and minimum hull sets
were explored in [Barbosa et al. 2013], where tight bounds for the size of minimal hull
sets of cubic graphs were obtained and, for certain graph classes, it was proved that ev-
ery minimal hull set is also minimum. On the negative side, it was proved that the hull
number is NP-hard on general graphs [Centeno et al. 2011b].

[Araújo et al. 2018] introduced the P ∗
3 convexity and showed that, for this con-

vexity, determining the hull number is NP-hard on planar bipartite graphs with maximum
degree four, and also on subgraphs of grids, and explored the interplay between P3 and
P ∗
3 convexities.

In the P3 convexity, studies considering graph products were performed showing
that, given a graph G and an integer k, determining whether hP3(G) ≤ k remains NP-
complete for the Cartesian product of graphs [Coelho et al. 2019]. On the order hand, in
the same paper, the hull number of the strong and lexicographic product of two general
graphs was determined, bounds were presented for the Cartesian product, G□H , of two
general graphs and exact values were presented for G□Kn.
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3. Interval number

Given a set S ⊆ V (G), the interval I[S] of S is formed by S, together with every vertex
belonging to the paths of P whose extreme vertices are also in S. If I[S] = S, then the
set S is a interval set. The interval number, inC(G), of a graph G is the cardinality of
the smallest interval set, that is, the cardinality of the smallest set S ⊆ V (G) such that
I[S] = V (G).

Regarding the interval number, Jayme also made fundamental contributions. In
particular, the decision problem related to determining the interval number was proved to
be NP-complete for arbitrary graphs in monophonic [Dourado et al. 2010c] and geode-
tic convexities [Dourado et al. 2006]; for chordal and chordal bipartite graphs in geode-
tic [Dourado et al. 2010b] and P3 [Centeno et al. 2009] convexities; and for bipartite
graphs in P ∗

3 convexity [Araújo et al. 2018].

On the other hand, bounds on ing(G) were presented for triangle-free graphs
and unit interval graphs in [Dourado et al. 2010c]. In the same paper, the authors
provided exact values for ing(G) when G is a cograph or a split graph. In addi-
tion, polynomial time algorithms for inP3(G) are known for trees, cographs and some
classes of grids [Centeno et al. 2009]; and for inP ∗

3
(G) for cographs and P4-sparse

graphs [Araújo et al. 2018].

4. Carathéodory number

The Carathéodory number of G is the smallest integer c such that for every set S of
vertices of G and every vertex u in HC(S), there is a set F ⊆ S with |F | ≤ c and
u ∈ HC(F ).

Some general results concerning the Carathéodory number of the P3 convexity
were published in collaboration with Jayme. [Barbosa et al. 2012] contains efficient al-
gorithms to determine the Carathéodory number of the convexity of trees and, more gen-
erally, block graphs, for path convexities. On the other hand, it has been proved that is
NP-hard to determine the Carathéodory number of the P3 convexity of bipartite graphs
[Barbosa et al. 2012].

Still, considering the P3 convexity, it was presented in [Coelho et al. 2014b] a
polynomial time algorithm for the computation of the Carathéodory number of a chordal
graph.

Another invariant associated with the Carathéodory number, the local
Carathéodory number, was also investigated. Let G be a graph and S ⊆ V (G). The
local Carathéodory number is the smallest integer l such that for every u ∈ HG(S) there
is a set F ⊆ S with |F | ≤ l and u ∈ HG(F ).

In [Dourado et al. 2013b] the (local) Carathéodory number of graph convexi-
ties was studied. In particular, it was proved that Carathéodory number and local
Carathéodory number are NP-complete in geodetic convexity. On the other hand, for the
case of split graphs, it was shown that the Carathéodory number is at most 3 and could
be easily computed. It was also proved in [Dourado et al. 2013b] that local Carathéodory
number is NP-complete in P3-convexity.

24



Cadernos do IME : Série Informática : Vol. 47, Outubro 2022

5. Convexity number
Let G be a graph. The cardinality cnC(G) of a maximum proper convex set S of G is the
convexity number of G. Intuitively, it is the size of a largest “non-obvious” convex set.

In [Centeno et al. 2009], it was proved that deciding whether cnP3(G) ≥ k
is NP-complete when G is an arbitrary graph. That result was later restricted
to bipartite graphs with diameter 3, in P3 and P ∗

3 convexities [Araújo et al. 2018].
Other NP-completeness results were shown considering the monophonic convex-
ity for general graphs [Dourado et al. 2010c] and the geodetic convexity for gen-
eral [Dourado et al. 2006] and bipartite graphs [Dourado et al. 2012a].

On the positive side, [Centeno et al. 2009] proved that cnP3(G) can be determined
in polynomial time for trees, cographs, and grids. In the scope of geodetic convex-
ity, [Dourado et al. 2012a] investigated properties of graphs with small convexity number,
for which some bounds on the parameter were derived.

Regarding the monophonic convexity, [Dourado et al. 2010c] mention that
cnm(G) can be determined in polynomial time for cographs. In a related concept, the
same paper reports a characterization for monophonic convex sets that leads to a polyno-
mial time algorithm for recognizing such sets.

6. Radon number
Let G be a graph. A Radon partition of R ⊆ V (G) is a partition of R into two disjoint
sets R1 and R2 with HC(R1) ∩ HC(R2) ̸= ∅. The Radon number rdC(G) of G is the
minimum integer r such that every set of at least r vertices of G has a Radon partition.

In the first paper on the Radon number of graph convexi-
ties [Dourado et al. 2012b], it was shown a tight bound for this invariant in the P3

convexity and the extremal graphs were characterized. On the complexity side,
the problem was shown to be NP-hard on the same convexity and tractable for
trees [Dourado et al. 2013c]. Its tractability was also shown for split graphs, which had
their Radon-partitionable sets characterized [Dourado et al. 2012c].

The geodetic Radon number was considered first in [Dourado et al. 2013a] and
later proved to be solvable efficiently in [Dourado et al. 2016a].

7. Rank
Let G be a graph. A set S ⊆ V (G) is convexly independent if v /∈ HC(S \ {v}), for every
v ∈ S. The rank rkC(G) of G is the cardinality of a maximum convexly independent
set of G. Regarding this parameter, some contributions were made in the context of P3,
geodetic and monophonic convexities.

In the paper by [Ramos et al. 2014] it was proved that the decision problem related
to rkm(G) is NP-complete. The authors also showed the NP-completeness for rkP3(G)
for split or bipartite graphs. In contrast, they show that, in P3 convexity, the rank can
be determined in polynomial time on trees and threshold graphs, and they present upper
bounds for rkP3(G) on a general graph G giving as a byproduct an upper bound also for
rdP3(G).

Considering the geodetic convexity, in [Kanté et al. 2017] it was proved that is
NP-hard to approximate the geodetic rank of bipartite graphs by a factor of n1−ϵ, for
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every ϵ > 0. On the other hand, the authors describe polynomial time algorithms for
finding the rank of P4-sparse, split and distance-hereditary graphs.

8. Other contributions related to graph convexity
We remark that the contributions of Professor Jayme were not restricted to those parame-
ters above-mentioned. For instance, there are studies concerning the Helly number in the
P3 and P ∗

3 convexities [Carvalho et al. 2019b, Carvalho et al. 2019a]. Partitioning prob-
lems associated with convex partitions and related problems were also target of studies,
see [Centeno et al. 2010, Artigas et al. 2010, Artigas et al. 2011, Artigas et al. 2013] and
also the paper on the topic in this special issue.

9. Concluding Remarks
We have surveyed some contributions by Professor Jayme Luiz Szwarcfiter to the area
of convexity in graphs. All of those mentioned publications make evident how he was
important to boost advances in the area. More than that, his career is made of a profound
sense of continuity, in the sense of always encouraging his students to persist towards
the progress of science. Undoubtedly, it caused a positive effect, as nowadays many
researchers follow his footsteps and continue his work around the globe. We are happy to
be part of this crowd.

An example of the great influence of Professor Jayme in the training of human re-
sources is the Algorithms and Graphs group of the Instituto de Informática of the Federal
University of Goiás. Jayme supervised, co-supervised, collaborated on research projects
and scientific articles with the vast majority of professors in this group. In other words,
Jayme plays an important role in the formation of this research group.

In this celebration of his 80th birthday, it is indispensable to pay Professor Jayme
Luiz Szwarcfiter’s special tribute for his honorable career. The authors would like to thank
Professor Jayme Luiz Szwarcfiter for his outstanding contributions, teachings, and advis-
ing. Working with Jayme has been a privilege. His ingenuity, knowledge, and support
made an immeasurable impact on our careers and it is a pleasure to use this opportunity
to thank for all of this positive impact he made.
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