
Software watermarking: contributions that
transcend the theme

Lucila Bento2, Davidson Boccardo3, Raphael Machado1,4,
Felipe Simões1, Vinı́cius Pereira de Sá5

1Institute of Computing – Fluminense Federal University (UFF)
Niterói – RJ – Brazil

2Institute of Mathematics and Statistics – State University of Rio de Janeiro (UERJ)
Rio de Janeiro – RJ – Brazil

3Clavis Information Security
Rio de Janeiro – RJ – Brazil

4National Institute of Metrology, Quality and Technology (INMETRO)
Duque de Caxias – RJ – Brazil

5Institute of Computing – Federal University of Rio de Janeiro (UFRJ)
Rio de Janeiro – RJ – Brazil

lucila.bento@ime.uerj.br, davidson@clavis.com.br, raphaelmachado@ic.uff.br

felipe simoes@id.uff.br, vigusmao@dcc.ufrj.br

Abstract. Software watermarking is the embedding of data in the graphs that
represent the execution of a computer program. Such structures are impor-
tant technology tools, but also bring interesting combinatorial problems. In
the present paper, we describe the advances in software watermarking during
the last two decades, highlighting the important contributions of Prof. Jayme
Szwarcfiter.

Resumo. Marcas d’água em software são informações que podem ser cod-
ificadas por meio da alteração dos grafos que caracterizam a execução de
um programa de computador. Tais estruturas são uma importante ferramenta
tecnológica, mas também trazem à tona problemas combinatórios interes-
santes. No presente artigo, descrevemos os avanços realizados nas últimas duas
décadas no tema das marcas dágua em software, destacando as importantes
contribuições do Prof. Jayme Szwarcfiter.

1. A practical problem
Despite the number of laws to protect intellectual property, software copyright infringe-
ment remains a problem to this date [Asongu 2021]. It is estimated that the financial
impact of unlicensed software in 2022 will exceed US$19.8 billion [Goff 2022]. Tech-
niques to protect against software piracy therefore emerge as a powerful ally.

For a long time watermarks have been used to establish authenticity, authorship,
or ownership of objects to protect software intellectual property. They are included in the
software to be protected, allowing the reveal which authentic copy it originated from in a
future audit process.

Cadernos do IME - Série Informática
e-ISSN: 2317-2193 (online)
DOI: 10.12957/cadinf.2022.70579

Cadernos do IME : Série Informática : Vol. 47, Outubro 2022

Among the existent watermark schemes, the ones based on graphs stand out owing
to their simplicity and resistance to attacks [Collberg and Thomborson 1999]. This type
of software watermark comprises encoding/decoding algorithms (codecs) to translate an
identification information (the identifier) into a graph, and embedding/extracting algo-
rithms to insert/recognize existing watermarks in a software. A good watermark codec
based on graphs should satisfy the following properties [Collberg and Nagra 2009]:

• stealthiness: the watermark graph must have the structure of a normal control flow
graph (CFG) to avoid detection;

• resilience: the watermark graph must be resistant to alterations in vertices and
edges;

• diversity: the encoding algorithm must be able to output multiple, distinct graphs
for the same identifier;

• frugality: the difference in size between the original program and the one with a
watermark must be negligible;

• efficiency: the codec must execute in polynomial time, so it does not pose any
hindrance to the process of producing (legal) copies of the software or to auditing
it in a timely fashion if that is ever required.

2. Advances in software watermarking
[Venkatesan et al. 2001] proposed the first graph-based watermarking scheme that
embeds the watermark in the CFG. After them, other authors proposed different
codecs using the most diverse classes of graphs. An attractive graph-based wa-
termarking scheme was introduced by Collberg, Kobourov, Carter, and Thombor-
son [Collberg et al. 2003], and afterward developed and improved upon by Chroni and
Nikolopoulos [Chroni and Nikolopoulos 2012]. These latter authors proposed a water-
mark graph belonging to a subclass of the reducible permutation graphs introduced by
the former authors. Though the mechanics of encoding and decoding the proposed wa-
termark are well described in [Chroni and Nikolopoulos 2012], such a special subclass
of reducible permutation graphs had not been fully characterized. We provided such a
characterization, based solely on the topology of the graph. They were referred to as
canonical reducible permutation graphs. We have also formulated a robust polynomial-
time algorithm that, given a watermark with an arbitrary number k ≥ 0 of deleted edges,
either retrieves the encoded identifier or proves that to be an impossible task. This result
was published in Algorithmica in 2019 [Bento et al. 2019a].

Our proposed characterization gave rise to a linear-time algorithm that can always
detect an attack and restore the original graph when k ≤ 2 edges are missing. Further-
more, we proved that k ≤ 5 general edge modifications (removals/insertions) can always
be detected in polynomial time, and that both bounds are tight. Jayme presented such
results in the 39th International Workshop on Graph-Theoretic Concepts in Computer
Science (WG’13) [Bento et al. 2013]. We also published them in Discrete Applied Math-
ematics in 2018 [Bento et al. 2018], where further details about the resilience of canonical
reducible permutation graphs against this sort of attack are given.

Our results have shown that, while their codec can be implemented in linear time
and has some resistance to edge deletion attacks, we can only embed a canonical re-
ducible permutation graph into a software’s CFG by introducing in its source code some

15

Cadernos do IME : Série Informática : Vol. 47, Outubro 2022

rather artificial instructions such as “GOTO” statements, which may give rise to suspicion
and improve an attacker’s odds of success. These observations led us to propose a new
watermark codec altogether.

Our proposed codec differed from the previous codec in a number of aspects. It
employs randomization to attain a high level of diversity, which is closely related to the
resilience of the watermarks against some forms of attack. In short, the structure of the
watermarks produced by our scheme is affected by random choices that are made during
the execution of the encoding algorithm, which gives rise to a number of distinct graphs
encoding the same identifier. This feature makes it less likely that a watermark can be
spotted through brute force comparisons — undertaken by specialized diff tools. Further-
more, our watermark is smaller than the previous ones and both encoding and decoding
algorithms can be implemented to run in linear time. Finally, we can customize at will
the number of edge removals that our watermarks can withstand. That is accomplished
by means of an edge-to-bit bijection, along with a decoding procedure that is immune to
error propagation, making it possible that standard bit-level error-correction techniques
are employed in the decoding algorithm. We presented this codec in the XIV Simpósio
Brasileiro em Segurança da Informação e de Sistemas Computacionais (SBSeg 2014).

3. Something was missing... for a long time!

The new codec described in Section 2 satisfies the properties of a good watermark scheme.
Among these properties, the most difficult to get is stealthiness. Indeed, we are interested
in producing watermark graphs that have a structure equivalent to the structure of the
programs to be protected. But what exactly is the class of graphs resulting from structured
programs’ CFGs?

To be able to propose a stealthy watermark scheme, we first need to understand
those graphs. We therefore presented a characterization of the class of structured program
graphs, which we called Dijkstra graphs, after Dijkstras’s structured programming con-
cepts presented fifty years ago [Dahl et al. 1972]. Our characterization led not only to a
greedy linear-time recognition algorithm for the class of Dijkstra graphs, but also to an
isomorphism algorithm. The latter was based on defining a convenient code for a Dijkstra
graph comprising a string of integers. Such a code uniquely identifies the graph, and two
Dijkstra graphs are isomorphic if and only if their codes coincide. The code itself has
size O(n), for a Dijkstra graph of n vertices, and the time complexity of the isomorphism
algorithm is also O(n). These results were published in Discrete Applied Mathematics
in 2019 [Bento et al. 2019b] and presented by Jayme at the II Workshop Franco-Brésilien
de Graphes et Optimization Combinatoire (2016), at the 19th Haifa Workshop on Inter-
disciplinary Applications of Graphs (2019), and last but not least in a online seminar from
the series of Graphs, Algorithms and Combinatorics seminars hosted by COPPE Sistemas
(UFRJ) in 2020.

The characterization of Dijkstra graphs allowed us to propose more stealthy wa-
termarking schemes. In fact, we describe a codec for graph-based software watermarking,
where the code corresponds to the Dijkstra Graphs [Bento et al. 2017]. Thus, when pro-
tecting structured software, the resulting watermarked CFG will always belong to the
class of Dijkstra graphs. The proposed watermark differs from all existing graph-based
watermarks we know of, where “GOTO” statements are inevitable for their embedding.

16

Cadernos do IME : Série Informática : Vol. 47, Outubro 2022

Encoding and decoding algorithms run in linear time. The encoding algorithm employs
randomization to produce distinct watermarks for the same identifier upon different exe-
cutions. The watermark is small. There is a one-to-one correspondence between the edges
of the watermark and the bits of the encoded identifier. Hence distortive attacks (whereby
the watermark is damaged, but not removed) can be detected after the graph-to-identifier
decoding process, and the correction of any flipped bit — up to some predefined number
— can be carried out by standard error-correction codes.

4. Ongoing work and future directions
We are now working on embedding/extracting algorithms to complete the watermarking
scheme. The biggest challenge in this context is to identify the best place to insert the
watermark in the source code, and to be able to keep the watermark belonging to the
Dijkstra graphs class even after its insertion in the source code. We recently presented
a preliminary version of the embedding/extracting algorithms at the 2022 IEEE Interna-
tional Workshop on Metrology for Industry 4.0 and IoT [Bento et al. 2022].

Our huge, heartfelt thanks to Professor Jayme Szwarcfiter, without whom none of
this would even have started, let alone produced so many fruits.

References
Asongu, S. A. (2021). Global software piracy, technology and property rights institutions.

Journal of the Knowledge Economy, 12(20/018):1036–1063.

Bento, L. M., Boccardo, D. R., Machado, R. C., de Sá], V. G. P., and Szwarcfiter, J. L.
(2018). On the resilience of canonical reducible permutation graphs. Discrete Applied
Mathematics, 234:32 – 46. Special Issue on the Ninth International Colloquium on
Graphs and Optimization (GO IX), 2014.

Bento, L. M., Boccardo, D. R., Machado, R. C., de Sá], V. G. P., and Szwarcfiter, J. L.
(2019a). Full characterization of a class of graphs tailored for software watermarking.
Algorithmica, 81:2899 – 2916.

Bento, L. M., Boccardo, D. R., Machado, R. C., Miyazawa, F. K., de Sá], V. G. P., and
Szwarcfiter, J. L. (2019b). Dijkstra graphs. Discrete Applied Mathematics, 261:52 –
62.

Bento, L. M. S., Boccardo, D., Machado, R. C. S., Pereira de Sá, V. G., and Szwarcfiter,
J. L. (2013). Towards a provably resilient scheme for graph-based watermarking. In
Brandstädt, A., Jansen, K., and Reischuk, R., editors, Graph-Theoretic Concepts in
Computer Science: 39th International Workshop, WG 2013, Lübeck, Germany, June
19-21, 2013, Revised Papers, pages 50–63. Springer Berlin Heidelberg.

Bento, L. M. S., Boccardo, D. R., Machado, R., de Sá, V. G. P., and Szwarcfiter,
J. L. (2017). Marca d’água estruturada. In XVII Simpósio Brasileiro de Seguraça.
Informação e de Sistemas Computacionais (SBSEG’17). SBC, Brası́lia, Brazil, pages
388–399.

Bento, L. M. S., Machado, R. C. S., and Simões, F. S. (2022). Software watermark
scheme. In 2022 IEEE International Workshop on Metrology for Industry 4.0 & IoT
(MetroInd4.0&IoT), pages 306–310.

17

Cadernos do IME : Série Informática : Vol. 47, Outubro 2022

Chroni, M. and Nikolopoulos, S. D. (2012). An efficient graph codec system for soft-
ware watermarking. In 2012 IEEE 36th Annual Computer Software and Applications
Conference Workshops, pages 595–600.

Collberg, C., Kobourov, S., Carter, E., and Thomborson, C. (2003). Error-correcting
graphs for software watermarking. Lecture Notes in Computer Science, 2880:156–
167.

Collberg, C. and Nagra, J. (2009). Surreptitious Software: Obfuscation, Watermarking,
and Tamperproofing for Software Protection. Addison-Wesley Professional, 1st edi-
tion.

Collberg, C. and Thomborson, C. (1999). Software watermarking: Models and dynamic
embeddings. In Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL ’99, pages 311–324, New York, NY, USA.
ACM.

Dahl, O. J., Dijkstra, E. W., and Hoare, C. A. R., editors (1972). Structured Programming.
Academic Press Ltd., London, UK, UK.

Goff, M. (2022). Software piracy 2022 stat watch.

Venkatesan, R., Vazirani, V., and Sinha, S. (2001). A graph theoretic approach to software
watermarking. In Moskowitz, I. S., editor, Information Hiding, pages 157–168, Berlin,
Heidelberg. Springer Berlin Heidelberg.

18

