

Paralellisation of Arc-Consistency Algorithms in a

Centralised Memory Machine

Marluce R. Pereira and Inês C. Dutra Maria Clicia Stelling de Castro
Programa de Engenharia de Sistemas e Computação

COPPE/UFRJ, Brasil

(marluce,inês)@cos.ufrj.br

Departamento de Informática e Ciência da Computação

Instituto de Matemática e Estatística

Universidade do Estado do Rio de Janeiro, Brasil

clicia@ime.uerj.br

Abstract

This work presents the parallelisation of the AC-5

arc-consistency algorithm for a centralised memory

machine (Enterprise). We conducted our experiments

using an adapted version of the PCSOS parallel

constraint solving system, over finite domains. In the

implementation for a centralised memory machine

(CMM) we use synchronisation based on atomic read-

modify-write primitives supported in hardware. We ran

four benchmarks used by the original PCSOS to debug

and assess the performance of the system. Our results

show that arc-consistency algorithms have very good

speedups on CMM systems. We implemented different

kinds of partitioning for the constraints, and different

kinds of distributed labeling. We showed that

performance of the benchmarks are greatly affected by

these kinds of partitioning and distributed labeling.

One of our applications achieves superlinear speedups

due to distributed labeling. Speedups for the centralised

memory machine are better than for the original

version. Our results still show that we have a great

potential to improve performance. Better organisation

of shared data structures, analysis of the constraint

graph could lead to a better distribution of labeling and

indexicals, as well as algorithm restructuring could

help to improve performance.

1. Introduction

Finite domain Constraint Satisfaction Problems

(CSPs) usually describe NP-complete search problems.

The arc-consistency algorithms can help to eliminate

inconsistent values from the solution space. They can

be used to reduce the size of the search space, allowing

to find solutions for large CSPs.

Still, there are problems whose instance size make it

impossible to find a solution with sequential algorithms.

Concurrency and parallelisation can help to minimise

this problem because a constraint network generated by

a constraint program can be split among processes in

order to speed up the arc-consistency procedure.

Parallelisation of constraint satisfaction algorithms

brings two advantages: (1) programs can run faster, and

(2) large instances of problems can be dealt with

because of the amount of resources (memory and cpus).

Several works have been done on the parallelisation

and/or distribution of constraint systems. In [13,14],

authors describe logic gate level arc-consistency

parallel algorithms, extending similar approaches of

[24] and [7]. Gu and Sosic [12] implemented a parallel

arc-consistency algorithm on a fine-grained, massively

parallel hardware computer architecture. Fabiunke [9]

presented a parallel framework to solve constraint

satisfaction problems based on connectionist ideas of

distributed information processing. Hermenegildo [16]

introduced some of the problems faced by parallelising

compilers for logic and constraint programs. Zhang

and Mackworth developed two parallel algorithms to

solve finite domain constraint satisfaction problems

[25] and presented some results on parallel complexity

generalising previous results achieved by Kasif and

Delcher [17]. Nguyen and Deville presented a

distributed arc-consistency algorithm based on the AC-

4 algorithm for a distributed platform using message

passing [20]. Baudot and Deville [3] proposed

distributed versions of the AC-3 and AC-6 algorithms

with static scheduling. Luo et al. [19] presented

heuristics to guide the search for a solution in a CSP to

improve the execution time of arc-consistency

algorithms. Ferris and Mangasarian [10] presented a

particular technique to parallelise execution of

constraints in mathematical problems. Gregory and

Yang [11] have shown that good speedups can be

achieved in shared-memory platforms for solving finite

domain CSPs. Andino et al. [1, 2] implemented a

parallel version of the AC-5 algorithm [15] for a

logically shared memory architecture, the Cray T3E, a

high cost parallel platform.

Our work is based on Andino et al.'s

implementation. We seek to obtain good performance

on both a centralised memory machine and on-the-shelf

low cost clusters of PCs. We adapted their algorithms

and data structures to run first on a distributed-shared

memory platform using TreadMarks, a software

Distributed Shared-Memory (DSM) system [18]. We

also performed some experiments on a centralised

memory machine, the Enterprise 4500, in order to

assess the performance of our applications.

Andino et al. implemented only sequential labeling

and round-robin partitioning of indexicals. We added

one more kind of labeling, distributed, and one more

kind of partitioning, in blocks. We intended to show

that different kinds of labeling and partitioning of

indexicals contribute to improve performance.

Our results show that arc-consistency algorithms can

achieve good speedups. One of our applications

achieves superlinear speedups due to the distributed

labeling. Our best results achieve linear speedups (7.97

for 8 processors) in the centralised memory version.

We expect to improve our results in four ways: (1)

increasing the input data size, (2) restructuring the data

structures and algorithms, (3) using adaptive software

DSMs that reduce communication costs and hide

latencies [6], and (4) doing a more sophisticated

distribution of variables, indexicals and labeling

The paper is organised as follows. Section 2

describes the AC-5 arc-consistency algorithm and its

parallelisation. Section 3 describes succinctly the

porting of the PCSOS original system to our centralised

memory machine version based on TreadMarks version

previosly done. In Section 4 we present the

methodology used in our experiments. In Section 5 we

present our results, and finally, in Section 6 we draw

our conclusions and future works.

2. The AC-5 Arc-Consistency Algorithm

A CSP can be modeled through constraints that can

be expressed as relations involving variables. Each

variable has an associated domain that can be finite or

infinite. Arc-consistency algorithms solve CSPs over

finite domains. There are several arc-consistency

algorithms in the literature. Our work is based on the

AC-5 algorithm that was firstly presented by

Hentenryck [15]. AC-5 is a generalisation of other arc-

consistency algorithms and it is parametrised on two

procedures that are specified, but whose

implementation are left open. It implements a constraint

graph, where each edge and each node represents,

respectively, a constraint and a variable.

Andino et al. [2] implemented a parallel version of

the AC-5 algorithm, called PCSOS (Parallel Constraint

Sthocastic Optimisation Solver), using the indexical

scheme [5]. In this scheme, a constraint is translated

into a set of indexicals that relate only two different

variables. The execution of an indexical triggers

changes in the domains of its set of related variables.

These domains must be updated. The set of finite

domains that keeps the current domain of each variable

is called store.

The AC-5 algorithm presents two main steps. In the

first step, all indexicals are considered once and the

node-consistency is realised for each one. The store is

updated and the variable related with this indexical is

queued in a propagation queue. In the second step,

while the propagation queue is not empty a variable is

dequeued and arc-consistency is executed for all

indexicals that depend on it.

The algorithm finishes when all variables are ground

or when no solution is found or when we reach a fixed-

point without being able to prune any more variable

domain. At each arc-consistency step, if some variable

is not yet ground, the algorithm enters the labeling

phase to choose one non-ground variable and one of its

values. During propagation, if an inconsistency is

found, it is necessary to backtrack and choose another

value to the non-ground variable.

3. PCSOS and PCSOS_SHM

PCSOS was implemented on a logically shared

memory platform, the Cray T3E.

Our first step on porting the PCSOS to a DSM [21]

platform (PCSOS_TMK version) was to study its data

structures, understand them, and separate private data

from shared data. We also needed to adapt the data

structures to the software DSM we used, since the

PCSOS system relied on the SHMEM library [23] to

access logically shared data on remote nodes. We then

established the right synchronisation points in the

source code in order to obtain a parallel correct code.

Besides porting the original PCSOS code to a

software DSM platform, we implemented two kinds of

labeling: sequential and distributed, and two kinds of

partitioning of indexicals: round-robin, and block.

The sequential labeling assumes that each processor

can apply the labeling procedure over any variable. The

distributed labeling partitions the set of variables in

subsets of equal size, and each processor can execute

the labeling procedure over its own subset. The round-

robin partitioning of indexicals assumes that each

indexical is allocated to each process at a time. The

partition of indexicals in blocks assumes that a block of

consecutive indexicals is allocated to each process. This

partitioning is done in the beginning of the computation

upon reading the input data file that contains the

constraint network.

The version we used for the centralised memory

machine (PCSOS_SHM) is very similar to the cluster

version. Synchronisation in this platform is obtained

through atomic read-modify-write primitives supported

in hardware and taken from the spinlock.h include file

used in the Linux kernel for Ultraparc processors. In the

cluster implementation we needed synchronisation for

reading and for multiple writes of shared data, because

TreadMarks uses the Lazy Release Consistency

memory model to keep memories coherent. In the

centralised memory machine, we removed the

synchronisation for reading shared data, because the

consistency memory model is sequential in this

machine.

4. Methodology and Applications

We used a centralised memory platform to make our

experiments. This platform is a Sun Enterprise 4500

with 4 GBytes of memory, composed by 14 Ultrasparc

processors with clock frequency of 400 Mhz,

interconnected by a Gigaplane bus at 100 Mhz, that

delivers up to 3.2 GBytes per second, and Solaris 2.8

operating system. Synchronisation in this platform is

obtained through atomic read-modify-write primitives

supported in hardware and taken from the spinlock.h

include file used in the Linux kernel for Ultrasparc

processors.

Our experiments were run on 8 processors in order

to leave other processors to other users, and because

our data samples are scalable up to 8 processors. We

ran each experiment 10 times and presented the average

execution time in seconds. The standard deviation was

less than 5% in this platform.

We have used a set of four benchmarks: Arithmetic,

Sudoku, N-Queens and Parametrizable Binary

Constraint Satisfaction Problem (PBCSP). These

applications are the same used by Andino et al. In their

experiments.

Arithmetic. It is a synthetic benchmark. It is formed by

sixteen blocks of arithmetic relations, [B1,...,B16]. Each

block contains fifteen equations and inequations

relating six variables. Blocks Bi and Bi+1 are connected

by an additional equation between a pair of variables,

one from Bi and the other one from Bi+1. Coefficients

were randomly generated. The goal is to find an integer

solution vector. This kind of constraint programming is

very much used for decomposition of large optimisation

problems.

Sudoku. This application is a crypto-arithmetic

Japanese problem. Given a grid of 25x25 squares,

where 317 of them are filled with a number between 1

and 25, fill the rest of squares such that each row and

column is a permutation of numbers 1 to 25.

Furthermore, each of the twenty-five 5x5 squares

starting in columns (rows) 1, 6, 11, 16, 21 must also be

a permutation of numbers 1 to 25. The 25x25 grid is

shown in Figure 1. Filled circles represent ground

variables.

Figure 1. Sudoku: matrix representing the

 variables of the problem

N-Queens. The N-Queens problem consists of placing

N queens in an NxN chess board in such a way that no

queen attacks each other in the same row, column and

diagonal. The instance presented corresponds to N

=111, size which leads to a significant execution time.

PBCSP. The Parametrizable Binary Constraint

Satisfaction Problem is another synthetic benchmark.

Instances of this problem are randomly generated given

four parameters: number of variables, the size of the

initial domains, density, and tightness. Density and

tightness are defined as follows: nc/nv-1 and 1-np/ds2,

respectively, where nv is the number of variables, nc is

the number of constraints involving one variable (it is

the same for all variables), np is the number of pairs

that satisfies the constraint, and ds is the size of the

initial domains.

In our experiments, we used two different sets of

variables containing 100 and 200 variables, with

tightness 75% and domain size equals to 20.

Table 1 presents a summary of the main

characteristics of our applications. They spend from

100 to 10,000 times more time executing the arc-

consistency algorithm than executing the labeling

procedure. We consider this benchmark as a

representative set of CSPs. Their constraint graphs

range from weakly connected to totally connected.

Table 1. Applications Characteristics

Applications

Charact.
Arith PBCSP_1 PBCSP_2 Queens Sud

Variables 126 100 200 111 308

Constraints 254 3,713 7,463 6,105 13,942

Indexicals 1,468 7,426 14,925 12,210 27,884

5. Perfomance Analysis

In the results on the CMM, for each application we

show execution times in seconds, speedups, and total of

indexicals executed per each processor. The total

number of acquires and barriers are similar to the

implementation in the cluster, except that the

implementation for the CMM does not need

synchronisation for reading shared data. As explained

before, the total number of failures corresponds to the

number of times backtracking was called after the

labeling phase.

In the next sections, we analyse the performance of

each application, in decreasing order of performance.

Arithmetic

Table 2 shows the execution times for the

application Arithmetic for 1, 2, 4 and 8 processors.

Figure 2 shows the speedups achieved by this

application. We obtained extraordinary speedups. We

achieved superlinear speedups from a maximum of 83

for 8 processors in the CMM. Second, we achieved

speedups from 2 to 4 (3.5) and from 4 to 8 (1.1)

processors.

The speedups related to 1 processor improved from

the cluster to the centralised memory version because

the cluster has a very high synchronisation overhead

compared with the centralised memory version [JCC].

This improvement is also due to the memory

consistency model implemented by TreadMarks that

requires extra synchronisation for reading shared data.

Table 2. Arithmetic. Execution times for 1,2,4, and 8

processors for the CMM

Number of

Processors

Execution Times

(sec.)

1 8.57

2 0.41

4 0.12

8 0.10

Observing the speedup graph, one may conclude

that this application is not scalable up to 8 processors.

However we still have room for improvements, because

the input data size for this application can be increased

in order to keep the processors busy, and the labeling

can be better designed to obtain a better load balance.

This issue is beyond the scope of this paper, since

design of better labeling procedures is a hard problem.

We have been investigating this problem in order to

produce better speedups for our applications.

Figure 2. Arithmetc. Speedups for the CMM

Table 3 shows the number of indexicals executed

per processor for 1, 2, 4 and 8 processors. Compared

with the cluster version [21], we can observe that the

load balance is very similar. However in the centralised

memory version we had a decrease in total load from 4

to 8 processors. This decrease of load for 8 processors

in the CMM is one of the factors that contributes for the

improvement in performance. The other factor is related

to using less synchronisation.

Table 3. Arithmetic. Total number of indexicals

executed per processor for the CMM

Proc # 1 2 4 8

0 1,953,66 89,255 23,363 2,392

1 - 44,077 25,459 9,227

2 - - 4,607 15,001

3 - - 13,665 10,437

4 - - - 3,237

5 - - - 2,069

6 - - - 19,566

7 - - - 3,543

Total of

indexicals
1,953,660 1333,332 67,094 65,472

PBCSP

Table 4 shows execution times for the application

PBCSP for the two input data of 100 (PBCSP_1) and

200 (PBCSP_2) variables, for 1, 2, 4 and 8 processors.

Table 4. PBCSP. Execution times for 1, 2, 4, and 8

processors for the CMM

Execution Times (sec.) Number of

Processors PBCSP_1 PBCSP_2

1 40.42 52.13

2 20.61 26.36

4 10.02 14.14

8 5.07 6.97

This application has linear speedups in this platform

as shown in Figure 3.

Figure 3. PBCSP. Speedups for the CMM

We can also observe from Table 5 that the load for 8

processors is much better balanced among the

processors in this platform.

Table 5. PBCSP_1. Total number of indexicals

executed per processor for the CMM

Proc # PBCSP_1 PBCSP_2 PBCSP_1 PBCSP_2

0 152,764 199,540 69,853 93,248

1 159,961 203,961 77,347 97,258

2 157,138 202,935 76,655 97,992

3 158,108 203,228 77,204 97,884

4 - - 77,776 97,754

5 - - 77,331 97,695

6 - - 78,037 97,148

7 - - 77,077 97,784

Total of

indexicals
627,971 809,664 611,290 776,763

Queens

The Queens application produced better results on

the CMM than on the cluster as can be seen in Table 6.

As this application has a totally connected constraint

graph, we did not manage to have a better performance

using sequential labeling and round-robin partitioning

of indexicals. As explained before, it is hard to modify

the AC-5 algorithm in order to do distributed labeling

or other kind of partitioning for this kind of constraint

graph.

Table 6. Queens. Execution times for 1, 2, 4, and 8

processors for the CMM

Number of

Processors

Execution Times

(sec.)

1 10.63

2 10.45

4 8.22

8 8.62

The load balancing for this application running on

the CMM is very similar to the one obtained on the

cluster., as can be seen on Table 7.

Table 7. Queens. Total number of indexicals

executed per processor for the CMM

Proc # 1 2 4 8

0 718,886 312,250 132,045 78,956

1 - 458,805 225,029 111,600

2 - - 21,338 100,600

3 - - 226,961 101,129

4 - - - 100,043

5 - - - 104,033

6 - - - 114,612

7 - - - 104,932

Total of

indexicals
718,886 771,055 605,373 815,905

Sudoku

Our last application produced very bad results,

mainly because of the constraint graph that has a very

irregular connection pattern. The performance was very

poor. Table 8 shows the execution times for 1, 2, and 4

processors.

For the same reasons presented for the Queens

application, we need more sophisticated labeling and

partitioning procedures in order to obtain better

performance.

Table 8. Sudoku. Execution times for 1, 2, and 4

processors for the CMM

Number of

Processors

Execution Times

(sec.)

1 60.39

2 95.77

4 106.44

6. Discussion

Andino et al. managed to obtain speedups for all

applications without using distributed labeling and

different kinds of partitioning of indexicals. For the

application Arithmetic, the maximum speedup was 3.0

for 8 processors. We managed to achieve superlinear

speedups for this applications in both platforms,

centralised shared memory and distrubuted shared

memory because of our distributed labeling. We also

managed to obtain better maximum speedup (3.5 from 2

to 4 processors) using the CMM version.

PBCSP_1 in the Andino et al. version presented

maximum speedup of 18.0 for 34 processors. In our

implementation we obtained almost linear speedups up

to 8 processors for the CMM version, which lead us to

conclude that performance will scale when we increase

the number of processors.

Queens presented maximum speedup of 4.0 for 16

processors, and Sudoku presented speedup of 2.3 for 18

processors. We have not managed to achieve these

speedups, but believe that by doing a more

sophisticated analysis of the constraint graph for these

applications, we could obtain better performance. As

mentioned before, distributing the labeling and doing a

better partitioning of indexicals is a hard problem that

we have been investigating in order to obtain better

load balancing and better performance for constraint

applications.

Andino et al. experiments were done in a high

performance architecture with a high bandwidth and

low latency processor interconnection network, 3D-

torus. The Cray T3E interprocessor network has 480

MBytes per second of nominal capacity (230 MBytes

per second in practice). The CMM has a nominal

capacity of 3.2 Gbytes per second, but it uses a high

latency bus that suffers with contention on multiple

memory accesses. Our interprocessor network achieves

only 100 Mbits per second. The Cray T3E also provides

efficient user library facilities for shared memory

programming through the SHMEM library. This library

provides fast atomic reads and writes to remote

memories. This counts as an advantage to Andino et

al.'s experiments, but we have shown that we can obtain

better performance changing the labeling and

partitioning algorithms. We believe that different kinds

of labeling and partitioning would produce better

results in their architecture. They only used round-robin

partitioning of indexicals and sequential labeling. Given

our hardware platforms restrictions and kind of

synchronisation system we employed, we consider our

results very positive.

We achieved superlinear speedups for the

application Arithmetic, and achieved best speedup for

the application PBCSP_1 of 7.97, with 8 processors, in

the CMM, using sequential labeling and partitioning of

indexicals round-robin, which practically corresponds

to 100% of efficiency. As mentioned before, we still

have several opportunities for improvement.

On the CMM, we achieved fairly good results for all

applications, except for Sudoku. We can still improve

on these results by implementing a more sophisticated

labeling procedure and indexical distribution, and fine

tuning data structures and the algorithms.

Regarding the cache coherence protocol, previous

experiments on hardware DSM system have shown that

hybrid protocols, where update-based protocols are

switched to invalidate-based protocols dynamically, can

yield better performance than pure invalidate-based

protocols [4, 8]. Other experiments on simulation of

adaptive software DSMs also suggests that other kind

of platform can improve our results[6].

7. Conclusions and Future Works

This work presented the parallelisation of the arc-

consistency algorithm AC-5. We conducted our

experiments in a centralised memory architecture, an

Enterprise 4500 with 14 processors. We ran four

benchmarks already used in the literature to assess our

experiments up to 8 processors. We implemented two

kinds of partitioning of indexicals: round-robin and

block, and two kinds of labeling: sequential and

distributed. For one application we achieved superlinear

speedups, because of our distributed labeling. Our best

speedup (7.97) was achieved for the PBCSP_1

application, on the CMM, using sequential labeling and

partitioning of indexicals round-robin, for 8 processors.

In fact, our best results are achieved for the centralised

memory architecture. The reasons for the low

performance of some experiments are directly related

to the size of the input data, and load imbalance caused

by the kinds of labeling and distribution of indexicals

performed in this work. These factors impedes better

performance in the CMM version.

We still have many opportunities for improvements.

Better organisation of shared data structures as well as

algorithm restructuring could help to improve

performance. Also, better analysis of the constraint

graph could lead to a better distribution of labeling and

indexicals.

Work is under way to accomplish these tasks and

produce higher speedups for these and other constraint

satisfaction applications, including experiments on

software DSM systems with faster interprocessor

networks such as Giganet, Gigabit and Myrinet.

Acknowledgments

The authors would like to thank Dr. Ruiz-Andino

for his help with the CSOS system used in this paper.

He kindly made available his C source code and

benchmarks. We would also like to thank Dr. Amorim

who granted us the utilisation of his cluster of PCs to

realise our experiments. Dr. Pontelli granted us the

utilisation of the centralised memory machine available

in New Mexico State University to perform or

experiments. We are very grateful for his kindness. This

work benefitted from useful comments from Dr. Santos

Costa. Inês Dutra would like to thank the CNPq CLoPn

project. This work is partially supported by the

Brazilian Research Council CNPq, Capes and by

FAPERJ.

References

[1] A.R. Andino, L. Araujo and J. Ruz, “Parallel Solver for

Finite Domain Constraints”, Technical Report SIP 71.98,

Department of Computer Science, Universidad Complutense

de Madrid.

[2] A. R. Andino and L. Araujo and F. Sáenz and J. Ruz,

“Parallel Execution Models for Constraint Programming Over

Finite Domains”, In Principles and Practice of Declarative

Programming, pp. 134-151, 1999.

[3]B. Baudot and Y. Deville, “Analysis of Distributed Arc-

Consistency Algorithms”, Technical Report RR 97-07,

University of Louvain, Belgium , 1997.

[4] V. M. Calegario and I. C. Dutra,”Performance Evaluation

of Or-Parallel Logic Programming Systems on Distributed

Shared Memory Architectures”, In Proceedings of the

EUROPAR'99, pp. 1484-1491, August/September 1999.

[5] B. Carlson, “Compiling and Executing Finite Domain

Constraints”, PhD thesis, University of Uppsala, Department

of Computer Science, 1995.

[6] M.C.S.Castro and C.L. Amorim, “Efficient Categorization

of Memory sharing Patterns in Software DSM Systems”, In

Proceedings of the 15th International Parrallel and

Distributed Processing Symposium, pp. 63, April 2001,CD-

ROM.

[7] Z. Collin and R. Dechter and S. Kartz, “On the Feasibility

of Distributed Constraint Satisfaction”, In Proceedings of the

12th Proceedings of the International Joint Conference on

Artificial Intelligence, pp.318-324, 1991.

[8] I.C. Dutra, V. Santos Costa and R. Bianchini, “ The

Impact of Cache Coherence Protocols on Parallel Logic

Programming Systems”, In International Conference on

Computational Logic, Lecture Notes in Artificial Intelligence,

V. 1861, pp. 1285-1299, 2000.

 [9] M. Fabiunke, “Parallel Distributed Constraint

Satisfaction”, In Proceedings of the International Conference

on Parallel and Distributed Processing Techniques and

Applications (PDPTA 99), Las Vegas”, pp. 1585-1591, June

1999.

[10] M.C. Ferris and O.L. Mangasarian.”Parallel Constraint

Dsitribution”, SIAM Journal on Optimization, V. 4, pp. 487-

500, 1991.

[11]S. Gregory and R. Yang, “Parallel Constraint Solving in

Andorra-I”, In Proceeding of the Fifth Generation Computer

Systems, pp 843—850, June 1992.

[12] J. Gu and R. Sosic,”A Parallel Archicteture for

Constraint Satisfaction”, In International Conference on

Industrial and Engineering Applications of Artificial

Intelligence and Expert Systems, pp. 229-237, June 1991.

[13] H. W. Guesguen, “Connectionist Networks for Constraint

Satisfaction”, In Proceedings of the National Conference on

Artificial Intelligence, Spring Symposium on Constraint-

based Reasoning, pp. 182-190, 1991.

[1] H. W. Guesguen and J. Hertzberg, “A Perspective of

Constraint-Based Reasoning”, In Lecture Notes on Artificial

Intelligence, Springer-Verlag, 1992.

[15] P. V. Hentenryck and Y. Deville and C. M. Teng, “A

Generic Arc-Consistency Algorithm and its Specifications”,

Artificial Intelligence, V. 57, N..2-3, pp. 291-321, October

1992.

[16] M. Hermenegildo, “Parallelizing Irregular and Pointer-

Based Computations Automatically: Perpectives from Logic

and Constraint Programming” In Parallel Computing, V. 26,

n. 13-14, 2000.

[17] S. Kasif, “On the Parallel Complexity of Discrete

Relaxation in Constraint Satisfaction Networks”, In Artificial

Inteligence, V. 45, pp. 275-328, 1990.

[18] P. Keleher and A. L. Cox and S. Dwarkadas and W.

Zwaenepoel, “TreadMarks: Distributed Shared Memory on

Standard Workstations and Operating Systems”, In

Proceedings of the 1994 Winter Usenix, pp.115-131, 1994.

[19] Q. Y. Luo and P. G. Hendry and J. T. Buchanan,

“Heuristic Search for Distributed Constraint Satisfaction

Problems”, Research Report KEG-6-93, Department of

Computer Science, University of Strathclyde, 1993.

[20] T. Nguyen and Y. Deville, ”A Distributed Arc-

Consistency Algorithm”, In Science of Computer

Programming, pp. 227-250, 1998.

[21] M. R. Pereira, I. C. Dutra, M. C. S. Castro,

“Parallelisation of Arc-Consistency Algorithms”, In VI em

Worshop Distribuidos y Paralelism, Jornadas Chilenas de

Computación 2002, Copiapó, Chile, CD-ROM.

[22] V. A. Saraswat, “Concurrent Constraint Programming

Languages”, In MIT Press, 1993.

[23] S. L. Scott, “Synchronization and Communication in the

T3E Multiprocessor”, In ASPLOS7, pp.26-36, October 1996.

[24] M. J. Swain and P. R. Cooper, “Parallel Hardware for

Constraint Satisfaction”, In Proceedings of the National

Conference on Artificial Intelligence, pp. 682-686, 1988.

[25] Y. Zhang and A. K. Mackworth, “Parallel and

Distributed Algorithms for Constraint Networks”, Technical

Report 91.6, Department of Computer Science, The

University of British Columbia, Canadá, 1991.

	cabec121:
	cabec131: 14:Cadernos do IME : Série Informática : Vol. 13 : Dezembro de 2002
	cabec141: Cadernos do IME : Série Informática : Vol. 13 : Dezembro de 2002 : 15
	cabec151: 16:Cadernos do IME : Série Informática : Vol. 13 : Dezembro de 2002
	cabec161: Cadernos do IME : Série Informática : Vol. 13 : Dezembro de 2002 : 17
	cabec171: 18:Cadernos do IME : Série Informática : Vol. 13 : Dezembro de 2002
	cabec181: Cadernos do IME : Série Informática : Vol. 13 : Dezembro de 2002 : 19

