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Abstract 
 

This work presents the parallelisation of the AC-5 

arc-consistency algorithm for a centralised memory 

machine (Enterprise). We conducted our experiments 

using an adapted version of the PCSOS parallel 

constraint solving system, over finite domains. In the 

implementation for a centralised memory machine 

(CMM) we use synchronisation based on atomic read-

modify-write primitives supported in hardware. We ran 

four benchmarks used by the original PCSOS to debug 

and assess the performance of the system. Our results 

show that arc-consistency algorithms have very good 

speedups on CMM systems. We implemented different 

kinds of partitioning for the constraints, and different 

kinds of distributed labeling. We showed that 

performance of the benchmarks are greatly affected by 

these kinds of partitioning and distributed labeling. 

One of our applications achieves superlinear speedups 

due to distributed labeling. Speedups for the centralised 

memory machine are better than for the original 

version. Our results still show that we have a great 

potential to improve performance. Better organisation 

of shared data structures, analysis of the constraint 

graph could lead to a better distribution of labeling and 

indexicals, as well as algorithm restructuring could 

help to improve performance. 

 

 

1. Introduction 
 

Finite domain Constraint Satisfaction Problems 

(CSPs) usually describe NP-complete search problems. 

The arc-consistency algorithms can help to eliminate 

inconsistent values from the solution space. They can 

be used to reduce the size of the search space, allowing 

to find solutions for large CSPs. 

Still, there are problems whose instance size make it 

impossible to find a solution with sequential algorithms. 

Concurrency and parallelisation can help to minimise 

this problem because a constraint network generated by 

a constraint program can be split among processes in 

order to speed up the arc-consistency procedure. 

Parallelisation of constraint satisfaction algorithms 

brings two advantages: (1) programs can run faster, and 

(2) large instances of problems can be dealt with 

because of the amount of resources (memory and cpus). 

Several works have been done on the parallelisation 

and/or distribution of constraint systems. In [13,14], 

authors describe logic gate level arc-consistency 

parallel algorithms, extending similar approaches of 

[24] and [7]. Gu and Sosic [12] implemented a parallel 

arc-consistency algorithm on a fine-grained, massively 

parallel hardware computer architecture. Fabiunke [9] 

presented a parallel framework to solve constraint 

satisfaction problems based on connectionist ideas of 

distributed information processing.  Hermenegildo [16] 

introduced some of the problems faced by parallelising 

compilers for logic and constraint programs.  Zhang 

and Mackworth developed two parallel algorithms to 

solve finite domain constraint satisfaction problems 

[25] and presented some results on parallel complexity 

generalising previous results achieved by Kasif and 

Delcher [17].  Nguyen and Deville presented a 

distributed arc-consistency algorithm based on the AC-

4 algorithm for a distributed platform using message 

passing [20].  Baudot and Deville [3] proposed 

distributed versions of the AC-3 and AC-6 algorithms 

with static scheduling.  Luo et al. [19] presented 

heuristics to guide the search for a solution in a CSP to 

improve the execution time of arc-consistency 

algorithms.  Ferris and Mangasarian [10] presented a 

particular technique to parallelise execution of 

constraints in mathematical problems. Gregory and 

Yang [11] have shown that good speedups can be 

achieved in shared-memory platforms for solving finite 

domain CSPs. Andino et al. [1, 2] implemented a 

parallel version of the AC-5 algorithm [15] for a 

logically shared memory architecture, the Cray T3E, a 

high cost parallel platform. 

Our work is based on Andino et al.'s 

implementation. We seek to obtain good performance 

on both a centralised memory machine and on-the-shelf 

low cost clusters of PCs. We adapted their algorithms 

and data structures to run first on a distributed-shared 

memory platform using TreadMarks, a software 

Distributed Shared-Memory (DSM) system [18]. We 



also performed some experiments on a centralised 

memory machine, the Enterprise 4500, in order to 

assess the performance of our applications. 

Andino et al. implemented only sequential labeling 

and round-robin partitioning of indexicals. We added 

one more kind of labeling, distributed, and one more 

kind of partitioning, in blocks. We intended to show 

that different kinds of labeling and partitioning of 

indexicals contribute to improve performance.  

Our results show that arc-consistency algorithms can 

achieve good speedups. One of our applications 

achieves superlinear speedups due to the distributed 

labeling. Our best results achieve linear speedups (7.97 

for 8 processors) in the centralised memory  version. 

We expect to improve our results in four ways: (1) 

increasing the input data size, (2) restructuring the data 

structures and algorithms, (3) using adaptive software 

DSMs that reduce communication costs and hide 

latencies [6], and (4) doing a more sophisticated 

distribution of variables, indexicals and labeling 

The paper is organised as follows. Section 2 

describes the AC-5 arc-consistency algorithm and its 

parallelisation. Section 3 describes succinctly the 

porting of the PCSOS original system to our centralised 

memory machine version  based on TreadMarks version 

previosly done. In Section 4 we present the 

methodology used in our experiments. In Section 5 we 

present our results, and finally, in Section 6 we draw 

our conclusions and future works. 
 

2. The AC-5 Arc-Consistency Algorithm 
 

A CSP can be modeled through constraints that can 

be expressed as relations involving variables. Each 

variable has an associated domain that can be finite or 

infinite. Arc-consistency algorithms solve CSPs over 

finite domains. There are several arc-consistency 

algorithms in the literature. Our work is based on the 

AC-5 algorithm that was firstly presented by 

Hentenryck [15]. AC-5 is a generalisation of other arc-

consistency algorithms and it is parametrised on two 

procedures that are specified, but whose 

implementation are left open. It implements a constraint 

graph, where each edge and each node represents, 

respectively, a constraint and a variable. 

Andino et al. [2] implemented a parallel version of 

the AC-5 algorithm, called PCSOS (Parallel Constraint 

Sthocastic Optimisation Solver), using the indexical 

scheme [5]. In this scheme, a constraint is translated 

into a set of indexicals that relate only two different 

variables. The execution of an indexical triggers 

changes in the domains of its set of related variables. 

These domains must be updated.  The set of finite 

domains that keeps the current domain of each variable 

is called store. 

The AC-5 algorithm presents two main steps. In the 

first step, all indexicals are considered once and the 

node-consistency is realised for each one. The store is 

updated and the variable related with this indexical is 

queued in a propagation queue. In the second step, 

while the propagation queue is not empty a variable is 

dequeued and arc-consistency is executed for all 

indexicals that depend on it. 

The algorithm finishes when all variables are ground 

or when no solution is found or when we reach a fixed-

point without being able to prune any more variable 

domain. At each arc-consistency step, if some variable 

is not yet ground, the algorithm enters the labeling 

phase to choose one non-ground variable and one of its 

values. During propagation, if an inconsistency is 

found, it is necessary to backtrack and choose another 

value to the non-ground variable. 

 

3. PCSOS and PCSOS_SHM 
 

PCSOS was implemented on a logically shared 

memory platform, the Cray T3E. 

Our first step on porting the PCSOS to a DSM [21] 

platform (PCSOS_TMK version) was to study its data 

structures, understand them, and separate private data 

from shared data. We also needed to adapt the data 

structures to the software DSM we used, since the 

PCSOS system relied on the SHMEM library [23] to 

access logically shared data on remote nodes. We then 

established the right synchronisation points in the 

source code in order to obtain a parallel correct code. 

Besides porting the original PCSOS code to a 

software DSM platform, we implemented two kinds of 

labeling: sequential and distributed, and two kinds of 

partitioning of indexicals: round-robin, and block. 

The sequential labeling assumes that each processor 

can apply the labeling procedure over any variable. The 

distributed labeling partitions the set of variables in 

subsets of equal size, and each processor can execute 

the labeling procedure over its own subset. The round-

robin partitioning of indexicals assumes that each 

indexical is allocated to each process at a time. The 

partition of indexicals in blocks assumes that a block of 

consecutive indexicals is allocated to each process. This 

partitioning is done in the beginning of the computation 

upon reading the input data file that contains the 

constraint network. 

The version we used for the centralised memory 

machine (PCSOS_SHM) is very similar to the cluster 

version. Synchronisation in this platform is obtained 

through atomic read-modify-write primitives supported 

in hardware and taken from the spinlock.h include file 

used in the Linux kernel for Ultraparc processors. In the 

cluster implementation we needed synchronisation for 

reading and for multiple writes of shared data, because 

TreadMarks uses the Lazy Release Consistency 

memory model to keep memories coherent. In the 

centralised memory machine, we removed the 

synchronisation for reading shared data, because the 

consistency memory model is sequential in this 

machine. 

  



4. Methodology and Applications 
 

We used a centralised memory platform to make our 

experiments. This platform is a Sun Enterprise 4500 

with 4 GBytes of memory, composed by 14 Ultrasparc 

processors with clock frequency of 400 Mhz, 

interconnected by a Gigaplane bus at 100 Mhz, that 

delivers up to 3.2 GBytes per second, and Solaris 2.8 

operating system. Synchronisation in this platform is 

obtained through atomic read-modify-write primitives 

supported in hardware and taken from the spinlock.h 

include file used in the Linux kernel for Ultrasparc 

processors. 

Our experiments were run on 8 processors in order 

to leave other processors to other users, and because 

our data samples are scalable up to 8 processors. We 

ran each experiment 10 times and presented the average 

execution time in seconds. The standard deviation was 

less than 5% in this platform. 

We have used a set of four benchmarks: Arithmetic, 

Sudoku, N-Queens and Parametrizable Binary 

Constraint Satisfaction Problem (PBCSP). These 

applications are the same used by Andino et al. In their 

experiments. 

Arithmetic. It is a synthetic benchmark. It is formed by 

sixteen blocks of arithmetic relations, [B1,...,B16]. Each 

block contains fifteen equations and inequations 

relating six variables. Blocks Bi and Bi+1 are connected 

by an additional equation between a pair of variables, 

one from Bi and the other one from Bi+1. Coefficients 

were randomly generated. The goal is to find an integer 

solution vector. This kind of constraint programming is 

very much used for decomposition of large optimisation 

problems. 

Sudoku. This application is a crypto-arithmetic 

Japanese problem. Given a grid of 25x25 squares, 

where 317 of them are filled with a number between 1 

and 25, fill the rest of squares such that each row and 

column is a permutation of numbers 1 to 25. 

Furthermore, each of the twenty-five 5x5 squares 

starting in columns (rows) 1, 6, 11, 16, 21 must also be 

a permutation of numbers 1 to 25. The 25x25 grid is 

shown in Figure 1. Filled circles represent ground 

variables. 

 
 

Figure 1. Sudoku: matrix representing the 

         variables of the problem 

 

N-Queens. The N-Queens problem consists of placing 

N queens in an NxN chess board in such a way that no 

queen attacks each other in the same row, column and 

diagonal. The instance presented corresponds to N 

=111, size which leads to a significant execution time. 

PBCSP. The Parametrizable Binary Constraint 

Satisfaction Problem is another synthetic benchmark. 

Instances of this problem are randomly generated given 

four parameters: number of variables, the size of the 

initial domains, density, and tightness. Density and 

tightness are defined as follows: nc/nv-1 and 1-np/ds2, 

respectively, where  nv is the number of variables, nc is 

the number of constraints involving one variable (it is 

the same for all variables),  np is the number of pairs 

that satisfies the constraint, and ds is the size of the 

initial domains. 

In our experiments, we used two different sets of 

variables containing 100 and 200 variables, with 

tightness 75% and domain size equals to 20. 

Table 1 presents a summary of the main 

characteristics of our applications. They spend from 

100 to 10,000 times more time executing the arc-

consistency algorithm than executing the labeling 

procedure.  We consider this benchmark as a 

representative set of CSPs. Their constraint graphs 

range from weakly connected to totally connected. 

 

Table 1. Applications Characteristics 

 
Applications 

Charact. 
Arith PBCSP_1 PBCSP_2 Queens Sud 

Variables 126 100 200 111 308 

Constraints 254 3,713 7,463 6,105 13,942 

Indexicals 1,468 7,426 14,925 12,210 27,884 

 

 

5. Perfomance Analysis 
 

In the results on the CMM, for each application we 

show execution times in seconds, speedups, and total of 

indexicals executed per each processor. The total 

number of acquires and barriers are similar to the 

implementation in the cluster, except that the 

implementation for the CMM does not need 

synchronisation for reading shared data. As explained 

before, the total number of failures corresponds to the 

number of times backtracking was called after the 

labeling phase. 

In the next sections, we analyse the performance of 

each application, in decreasing order of performance. 

 

Arithmetic 

 

Table 2 shows the execution times for the 

application Arithmetic for 1, 2, 4 and 8 processors. 

Figure 2 shows the speedups achieved by this 

application. We obtained extraordinary speedups. We 

achieved superlinear speedups from a maximum of 83 

  



for 8 processors in the CMM. Second, we achieved 

speedups from 2 to 4 (3.5) and from 4 to 8 (1.1) 

processors. 

The speedups related to 1 processor improved from 

the cluster to the centralised memory version because 

the cluster has a very high synchronisation overhead 

compared with the centralised memory version [JCC]. 

This improvement is also due to the memory 

consistency model implemented by TreadMarks that 

requires extra synchronisation for reading shared data. 

 

Table 2. Arithmetic. Execution times for 1,2,4, and 8 

processors for the CMM 

 

 

Number of 

Processors 

Execution Times 

(sec.) 

1 8.57 

2 0.41 

4 0.12 

8 0.10 

 

Observing the speedup graph, one may conclude 

that this application is not scalable up to 8 processors. 

However we still have room for improvements, because 

the input data size for this application can be increased 

in order to keep the processors busy, and the labeling 

can be better designed to obtain a better load balance. 

This issue is beyond the scope of this paper, since 

design of better labeling procedures is a hard problem. 

We have been investigating this problem in order to 

produce better speedups for our applications. 

 

 

 
Figure 2. Arithmetc. Speedups for the CMM 

 

Table 3 shows the number of indexicals executed 

per processor for 1, 2, 4 and 8 processors. Compared 

with the cluster version [21], we can observe that the 

load balance is very similar. However in the centralised 

memory version we had a decrease in total load from 4 

to 8 processors. This decrease of load for 8 processors 

in the CMM is one of the factors that contributes for the 

improvement in performance. The other factor is related 

to using less synchronisation. 

 

Table 3. Arithmetic. Total number of indexicals  

executed per processor for the CMM 

 

 

Proc # 1 2 4 8 

0 1,953,66 89,255 23,363 2,392 

1 - 44,077 25,459 9,227 

2 - - 4,607 15,001 

3 - - 13,665 10,437 

4 - - - 3,237 

5 - - - 2,069 

6 - - - 19,566 

7 - - - 3,543 

Total of 

indexicals 
1,953,660 1333,332 67,094 65,472 

 

 

PBCSP 

 

Table 4 shows execution times for the application 

PBCSP for the two input data of 100 (PBCSP_1) and 

200 (PBCSP_2) variables, for 1, 2, 4 and 8 processors.  

 

Table 4. PBCSP. Execution times for 1, 2, 4, and 8 

processors for the CMM 
 

Execution Times (sec.) Number of 

Processors PBCSP_1 PBCSP_2 

1 40.42 52.13 

2 20.61 26.36   

4 10.02 14.14 

8 5.07 6.97 

 

This application has linear speedups in this platform 

as shown in Figure 3. 

 

 
Figure 3. PBCSP. Speedups for the CMM 

 

We can also observe from Table 5 that the load for 8 

processors is much better balanced among the 

processors in this platform.  

Table 5. PBCSP_1. Total number of indexicals  

  



executed per processor for the CMM 

 

 

Proc # PBCSP_1 PBCSP_2 PBCSP_1 PBCSP_2 

0 152,764 199,540 69,853 93,248 

1 159,961 203,961 77,347 97,258 

2 157,138 202,935 76,655 97,992 

3 158,108 203,228 77,204 97,884 

4 - - 77,776 97,754 

5 - - 77,331 97,695 

6 - - 78,037 97,148 

7 - - 77,077 97,784 

Total of 

indexicals 
627,971 809,664 611,290 776,763 

 

Queens 

 

The Queens application produced better results on 

the CMM than on the cluster as can be seen in Table 6. 

As this application has a totally connected constraint 

graph, we did not manage to have a better performance 

using sequential labeling and round-robin partitioning 

of indexicals. As explained before, it is hard to modify 

the AC-5 algorithm in order to do distributed labeling 

or other kind of partitioning for this kind of constraint 

graph. 

 

Table 6. Queens. Execution times for 1, 2, 4, and 8 

processors for the CMM 
 

 

Number of 

Processors 

Execution Times 

(sec.) 

1 10.63 

2 10.45 

4 8.22 

8 8.62 

 

 

The load balancing for this application running on 

the CMM is very similar to the one obtained on the 

cluster., as can be seen on Table 7.  

 

Table 7. Queens. Total number of indexicals  

executed per processor for the CMM 

 

 

Proc # 1 2 4 8 

0 718,886 312,250 132,045 78,956 

1 - 458,805 225,029 111,600 

2 - - 21,338 100,600 

3 - - 226,961 101,129 

4 - - - 100,043 

5 - - - 104,033 

6 - - - 114,612 

7 - - - 104,932 

Total of 

indexicals 
718,886 771,055 605,373 815,905 

Sudoku 

 

Our last application produced very bad results, 

mainly because of the constraint graph that has a very 

irregular connection pattern. The performance was very 

poor. Table 8 shows the execution times for 1, 2, and 4 

processors.  

For the same reasons presented for the Queens 

application, we need more sophisticated labeling and 

partitioning procedures in order to obtain better 

performance. 

 

Table 8. Sudoku. Execution times for 1, 2, and 4 

processors for the CMM 
 

 

Number of 

Processors 

Execution Times 

(sec.) 

1 60.39 

2 95.77 

4 106.44 

 

 

6. Discussion 
 

Andino et al. managed to obtain speedups for all 

applications without using distributed labeling and 

different kinds of partitioning of indexicals. For the 

application Arithmetic, the maximum speedup was 3.0 

for 8 processors. We managed to achieve superlinear 

speedups for this applications in both platforms, 

centralised shared memory and distrubuted shared 

memory because of our distributed labeling. We also 

managed to obtain better maximum speedup (3.5 from 2 

to 4 processors) using the CMM version.  

PBCSP_1 in the Andino et al. version presented 

maximum speedup of 18.0 for 34 processors. In our 

implementation we obtained almost linear speedups up 

to 8 processors for the CMM version, which lead us to 

conclude that performance will scale when we increase 

the number of processors. 

Queens presented maximum speedup of 4.0 for 16 

processors, and Sudoku presented speedup of 2.3 for 18 

processors. We have not managed to achieve these 

speedups, but believe that by doing a more 

sophisticated analysis of the constraint graph for these 

applications, we could obtain better performance. As 

mentioned before, distributing the labeling and doing a 

better partitioning of indexicals is a hard problem that 

we have been investigating in order to obtain better 

load balancing and better performance for constraint 

applications. 

Andino et al. experiments were done in a high 

performance architecture with a high bandwidth and 

low latency processor interconnection network, 3D-

torus. The Cray T3E interprocessor network has 480 

MBytes per second of nominal capacity (230 MBytes 

per second in practice). The CMM has a nominal 

capacity of 3.2 Gbytes per second, but it uses a high 

latency bus that suffers with contention on multiple 

  



memory accesses.  Our interprocessor network achieves 

only 100 Mbits per second. The Cray T3E also provides 

efficient user library facilities for shared memory 

programming through the SHMEM library. This library 

provides fast atomic reads and writes to remote 

memories. This counts as an advantage to Andino et 

al.'s experiments, but we have shown that we can obtain 

better performance changing the labeling and 

partitioning algorithms. We believe that different kinds 

of labeling and partitioning would produce better 

results in their architecture. They only used round-robin 

partitioning of indexicals and sequential labeling. Given 

our hardware platforms restrictions and kind of 

synchronisation system we employed, we consider our 

results very positive. 

We achieved superlinear speedups for the 

application Arithmetic, and achieved best speedup for 

the application PBCSP_1 of 7.97, with 8 processors, in 

the CMM, using sequential labeling and partitioning of 

indexicals round-robin, which practically corresponds 

to 100% of efficiency. As mentioned before, we still 

have several opportunities for improvement. 

On the CMM, we achieved fairly good results for all 

applications, except for Sudoku. We can still improve 

on these results by implementing a more sophisticated 

labeling procedure and indexical distribution, and fine 

tuning data structures and the algorithms. 

Regarding the cache coherence protocol, previous 

experiments on hardware DSM system have shown that 

hybrid protocols, where update-based protocols are 

switched to invalidate-based protocols dynamically, can 

yield better performance than pure invalidate-based 

protocols [4, 8]. Other experiments on simulation of 

adaptive software DSMs also suggests that other kind 

of platform can improve our results[6]. 

 

7. Conclusions and Future Works 
 

This work presented the parallelisation of the arc-

consistency algorithm AC-5. We conducted our 

experiments in a centralised memory architecture, an 

Enterprise 4500 with 14 processors. We ran four 

benchmarks already used in the literature to assess our 

experiments up to 8 processors. We implemented two 

kinds of partitioning of indexicals: round-robin and 

block, and two kinds of labeling: sequential and 

distributed. For one application we achieved superlinear 

speedups, because of our distributed labeling. Our best 

speedup (7.97) was achieved for the PBCSP_1 

application, on the CMM, using sequential labeling and 

partitioning of indexicals round-robin, for 8 processors. 

In fact, our best results are achieved for the centralised 

memory architecture. The reasons for the low 

performance of some experiments  are directly related 

to the  size of the input data, and load imbalance caused 

by the kinds of labeling and distribution of indexicals 

performed in this work. These factors impedes better 

performance in the CMM version. 

We still have many opportunities for improvements. 

Better organisation of shared data structures as well as 

algorithm restructuring could help to improve 

performance. Also, better analysis of the constraint 

graph could lead to a better distribution of labeling and 

indexicals. 

Work is under way to accomplish these tasks and 

produce higher speedups for these and other constraint 

satisfaction applications, including experiments on 

software DSM systems with faster interprocessor 

networks such as Giganet, Gigabit and Myrinet. 
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