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Abstract

In an earlier paper [17], we described the mental patho-

logy known as neurosis in terms of its relation to memory

function. We proposed, based on a neural network model,

that neurotic behavior may be understood as an associative

memory process in the brain, and that the symbolic asso-

ciative process involved in psychoanalytic working-through

can be mapped onto a corresponding process of reconfig-

uration of the network. As a first approximation, memory

was modeled by a Boltzmann Machine represented by a

complete graph. However, it is known that brain neuronal

topology is selectively structured. In this paper, we fur-

ther develop the memory model, by including some known

microscopic mechanisms that control synaptic properties,

showing that the network self organizes to a hierarchical,

clustered structure. The model is illustrated through a com-

puter simulation, where we show some mathematical prop-

erties of the resulting complex network.

1. Introduction

Psychoanalytic research regarding the transference neu-

roses has found that traumatic and repressed memories are

knowledge which is present in the subject, but which is in-

accessible to him. It is therefore considered unconscious

knowledge [6]. Freud observed that neurotic patients sys-

tematically repeated symptoms in the form of ideas and im-

pulses, and called this tendency a compulsion to repeat [7].

He related the compulsion to repeat to repressed or trau-

matic memory traces, caused by a conflict associated with

libidinal fixation and frustration [6].

Neurotic analysands have been able to obtain relief and

cure of painful symptoms through a mechanism calledwork-

ing-through. This procedure aims at developing knowledge

regarding the causes of symptoms by accessing unconscious

memories, and understanding and changing the way the ana-

lysand obtains satisfaction [7]. Lacan emphasizes the cre-

ative nature of transference [11].

Although inconclusive, psychodynamical theories seem

to suggest correlations between creativity, psychopathology

and unconsciousness [6, 7, 11, 14, 13]. We explored these

commonalities and proposed, in a previous paper [17], a

schematic functional model for some concepts associated

with neurotic mental processes, as described by Sigmund

Freud and further developed on by Jacques Lacan [6, 7, 11].

Our description is based on the current view that the brain is

a cognitive system composed of neurons, interconnected by

a network of synapses, that cooperate locally among them-

selves to process information in a distributed fashion. Men-

tal states thus appear as the result of the global cooperation

of the distributed neural cell activity in the brain [10, 15].

We also consider that the emergence of a global state of

the neural network of the brain generates a bodily response

which we call an act.

As a first approximation, in [17] memory was modeled

by a Boltzmann Machine represented by a complete graph.

It is known, however, that brain neuronal topology is se-

lectively structured. Neurons interact mainly with spatially



close neighbors, having fewer long-range synapses connect-

ing them to other neurons farther away [8, 10]. In this paper,

we further develop the memory model, by including some

known microscopic mechanisms that control synaptic prop-

erties, and show that the network self organizes to a hierar-

chical, clustered structure. We thus represent brain mecha-

nisms involved in neurosis, as a complex system, based on

a neural network model and analyse it according to recent

methods developed for the study of complex networks.

In the next section, we review our functional and com-

putational model for neurosis. In Section 3, we describe

a self-organizing model for generating hierarchically clus-

tered memory modules, representing sensorial and declara-

tive memories. We then show results from computer simu-

lations with somemathematical properties of these complex

networks. In the last section, we draw some conclusions and

perspectives for future work.

2 Functional and Computational Model for

the Neuroses

In this section, we review the model described in [17].

There we proposed that the neuroses manifest themselves

as an associative memory process, a mechanism where the

network returns a stored pattern when it is shown another

input pattern sufficiently similar to the stored one [9]. We

modeled the compulsion to repeat neurotic symptoms by

supposing that such a symptom is acted when the subject

is presented with a stimulus which resembles, at least par-

tially, a repressed or traumatic memory trace. The stimulus

causes a stabilization of the neural net onto a minimal en-

ergy state, corresponding to the memory trace that synthe-

sizes the original repressed experience, which in turn gen-

erates a neurotic response (an act). The neurotic act is not a

result of the stimulus as a new situation but a response to the

repressed memory trace. Repression can be accounted for

by a mechanism which inhibits formation of certain synap-

tic connections, in the cortical map formation process.

We mapped the linguistic, symbolic associative process

involved in psychoanalytic working-through into a corre-

sponding process of reinforcing synapses among memory

traces in the brain. These connections should involve de-

clarative memory, leading to at least partial transformation

of repressed memory to consciousness. This has a rela-

tion to the importance of language in psychoanalytic ses-

sions and the idea that unconscious memories are those that

cannot be expressed symbolically. We propose that as the

analysand symbolically elaborates manifestations of uncon-

scious material through transference in psychoanalytic ses-

sions, he is reconfiguring the topology of his neural net,

by creating new connections and reinforcing or inhibiting

older ones. The network topology which results from this

reconfiguration process will stabilize onto new energy min-

ima, associated with new acts. The process of slowly and

repeatedly reconfiguring synaptic connections to elaborate

knowledge accounts for the long durations of psychoana-

lytic processes, where repetition is specially important.

Memory functioning is modeled by a Boltzmann ma-

chine, where node states take binary values [9]. Pattern

retrieval on the net is achieved by a standard simulated an-

nealing process, in which the network temperature parame-

ter is gradually lowered by a factor  . We considered that

the network initially had random connection weights, and

was divided into two weakly linked subsets, representing

conscious and unconscious parts of memory. These parts

should correspond to a map formation described in [2], rep-

resenting neurotic memory states.

To simulate the working-through process, we stimulate

the net by means of a change in a randomly chosen node ✁✄✂
belonging to the “unconscious” section of a neurotic mem-

ory pattern. This stimulus is then presented to the network

and, if the Boltzmann machine retrieves a pattern with con-

scious configuration different than that of the neurotic pat-

tern, we interpret this as a new conscious association, and

enhance all weights from ✁ ✂ to the changed nodes in the

conscious cluster. The increment values are proportional to

the products of the states of the neurons connected by the

synapse and the learning parameter
☎
. New knowledge is

learned only when the stimulus from the analyst is not sim-

ilar to the neurotic memory trace. This procedure must be

repeated for various reinforcement iterations in an adaptive

learning process, and also each set of reinforcement itera-

tions must be repeated for various initial annealing temper-

ature values.

3 Hierarchical Memory Model

In a further refinement of our model, we now consider

that neurons belong to two different subsets corresponding

sensorial and declarative memory. Memory traces stored

in sensorial memory represent mental images of stimuli re-

ceived by sensory receptors (located, in eyes, ears, skin, and

other parts of the body). Sensorial memory represents brain

structures such as the hippocampus. Declarative memory

stores representations of memory traces stored in sensorial

memory, i. e. symbols, and represents brain structures such

as Broca’s andWernicke’s areas and areas of the frontal cor-

tex. These latter areas are associated with language and be-

cause of them, we can associate a word such as “red” to the

visual sensation of seeing a red object. We thus consider

that when a stimulus ✆ , that retrieves a pattern in sensorial
memory, stimulates also retrieval of an associated pattern in

declarative memory, it becomes conscious. Stimuli of sen-

sorial memory which do not cause activation of declarative

memory, remain unconscious. This mechanism is similar

to ideas proposed by Edelman in [4], and strongly reflects
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Freud’s concepts of conscious and unconscious mental pro-

cesses, and the role of language in psychoanalysis.

In order to model structure of the topology of each of

the two memories, we consider the following microscopic

biological mechanisms. Brain cells in many animals have a

structure called on-center/off-surround, in which a neuron

is in cooperation, through excitatory synapses, with other

neurons in its immediate neighborhood, whereas it is in

competition with neurons that lay outside these surround-

ings. Competition and cooperation are found statically hard-

wired, and also as part of many neuronal dynamical pro-

cesses, where neurons compete for certain chemicals [10].

For example, in synaptogenesis, substances generically cal-

led neural growth factors are released by stimulated neu-

rons and, spreading through diffusion, reach neighboring

cells, promoting synaptic growth. Cells that receive neural

growth factors make synapses and live, while cells that have

no contact with these substances die [10]. A neuron that

releases neural growth factor guides the process of synap-

tic formation in its tri-dimensional neighborhood, becom-

ing a center of synaptic convergence. When neighboring

neurons release different neural growth factors in different

amounts, many synaptic convergence centers are generated

and a competition is established between them through the

synapses of their surroundings. A signaling network is thus

established to control development and plasticity of neu-

ronal circuits. Since this competition is started and con-

trolled by environmental stimulation, it is possible to have

an idea of the way environment represents itself in the brain.

Based on these microscopic mechanisms, we developed

the following clustering algorithm to model the self orga-

nizing process which results in a structured topology of each

of the two memories.

Step 1 Neurons are uniformly distributed in a bi-dimensio-

nal sheet.

Step 2 To avoid the unnecessary and time-consuming nu-

merical solution of the diffusion equation of the neu-

ral growth factors, we assume a gaussian solution.

Therefore, a synapse is allocated to connect a neuron

✁ ✂ to a neuron ✁ ✁ according to a gaussian probability
given by eq. 1

✂☎✄✝✆✟✞✡✠☛✠✌☞✎✍✑✏✓✒✕✔✗✖✘✔✚✙✛ ✁ ✖✜✙✛ ✂✣✢☛✤✡✥ ✔✧✦✩★ ✤✪✢✫✢✫✥✭✬ ✦✩✮✯★ ✤✱✰ (1)

where
✙✛ ✁ and ✙✛ ✂ are the positions of ✁ ✁ and ✁ ✂ in the

bi-dimensional sheet and
★
is the width of the dis-

tribution and a model parameter. If a synapse is allo-

cated to connect ✁ ✂ and ✁ ✁ , its strength is proportional
to
✂ ✄☎✆✟✞✡✠☛✠

.

Step 3 We verified in [2] that cortical maps representing

different stimuli are formed, such that each stimulus

activates a group of neurons spatially close to each

other, and that these groups are uniformly distributed

along the sheet of neurons representing memory. We

thus now randomly choose ✲ neuronswhich will each

be a center of the representation of a stimulus. The

value of ✲ should be chosen considering the storage

capacity of the Boltzmann machine [9, 1].

Step 4 For each of the ✲ centers chosen in Step 3, re-

inforce adjacent synapses according to the follow-

ing criteria. If ✁ ✂ is a center, ✳✪✴✚✲✶✵✸✷ ☞✺✹ ✁✼✻ ✽ ✂ ✁ ✻ ,
where ✽ ✂ ✁ is the weight of the synapse connecting

✁ ✁ to ✁ ✂ . For each ✁ ✁ adjacent to ✁ ✂ , increase ✻ ✽ ✂ ✁ ✻
by ✾ ✽ ✂ ✁ , with probability ✂ ✛❀✿✩❁ ✵✩❂ ☞ ✻ ✽ ✂ ✁ ✻ ✥ ✳✪✴✚✲ ✵ ✷ ,
where ✾ ✽ ✂ ✁ ☞❄❃✓✂ ✛✡✿✩❁ ✵✡❂ and ❃❆❅❈❇

is a model pa-

rameter chosen in ❉ ❊ ✰●❋✑❍ . After incrementing ✻ ✽ ✂ ✁ ✻ ,
decrement ✾ ✽ ✂ ✁ from the weights of all the other

neighbors of ✁ ✂ , according to: ■✯❏▲❑☞◆▼ ✰ ✻ ✽ ✂n❖ ✻ ☞ ✻ ✽ ✂n❖ ✻ ✖✾ ✽ ✂n❖ , where ✾ ✽ ✂◗❖ ☞❘✔ ❋ ✖ ✻ ✽ ✂◗❖ ✻ ✥ ✹ ❖✸❙❚ ✁❯✻ ✽ ✂n❖ ✻ ✢ ✾ ✽ ✂ ✁ .
Step 5 Repeat step 4 until clustering criterion is met.

In the above clustering algorithm, steps 1, 2 and 3 are

justified in the algorithm’s description. Step 4 strength-

ens synapses within a cluster and reduces synapses between

clusters (disconnects clusters). By cluster, we mean a group

of neurons that are spatially close, with higher probablilty

of being adjacent by stronger synapses. This step repre-

sents a kind of preferential attachment criterion with some

conservation of energy (neurosubstances) among neurons.

Neurons that have received stronger sensorial stimulation

and are therefore more strongly connected, will stimulate

there neighborhoods and promote still stronger connections.

This is in agreement with the microscopic biological mech-

anisms we described above.

The growth of long-range synapses is energetically more

costly than short-range synaptic growth, and therefore the

former are less frequent in the brain than the latter. For allo-

cating long-range synapses which connect clusters, we con-

sidered the basic learning mechanism proposed by Hebb [4,

10, 9], based on the fact that synaptic growth among two

neurons is promoted by simultaneous stimulation of the pair.

This also suggests a mechanism through which the exter-

nal world, culture and language, reflects itself in the brain.
Memory traces stored by configurations of certain neuronal
states, which receive simultaneous stimuli, should enhance

synaptic growth among these neurons, allowing association

among traces. Since memory traces represent sensorial in-

formation and concepts (declarative memories), we are also

representing association of ideas or symbols by long-range

synapses. This suggests a way in which basic language

structure (andmaybeChomsky’s concept of Universal Gram-

mar [3]) is mapped onto brain topology.

We are studying these processes and, since we are still

not aware of synaptic distributions that result in such topolo-
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gies, as a first approximation, we allocate synapses ran-

domly among clusters. Within a cluster  , a neuron ✁ ✂
is chosen to receive the connection with probability

✂ ✂ ☞✹ ✁ ✻ ✽ ✂ ✁ ✻ ✥ ✹ ✵✡❂✂✁☎✄ ✹ ❖ ✻ ✽ ✁ ❖ ✻ . If the synapse connects clus-
ters in different memory sheets (sensorial with declarative

memories), its randomly chosen weight is multiplied by a

real number in interval ❉ ❊ ✰✪❋✑❍ .
Mechanisms of memory storage and retrieval by the Boltz-

mann Machine and simulation of the working-through psy-

choanalytical process are then carried on as reviewed in

Section 2 and described in [17].

4 Simulations and Network Properties

We illustrate the model with a preliminary simulation

experiment for a network with ✆ ☞✞✝✭✦
nodes, such that

✆ ✠✠✟ ✵ ✠ ☞ ❋☛✡ of them belong to the sensorial memory subset.

Synapses connecting different memories are multiplied by☞ ☞ ❊✍✌✏✎ , and the other parameters for the annealing process
in the BoltzmannMachine are attributed the same values we

have presented in [17].

In Fig. 1 we show one of the topologies generated af-

ter executing only the clustering algorithm and in Fig. 2 the

corresponding topology after long-range synaptic genera-

tion. Although the number of neurons is still quite small,

we can have an idea that the algorithm self-organizes the

network in a clustered and hierarchical manner. Fig. 3 gives

a more quantitative view.

We generated 1000 topologies from the same initial pa-

rameter values and measured the average node degree ( ❏ )
distribution for these complex network structures. In Fig. 3,

the cross symbols represent the values found in our simu-

lations and, the curve in logarithmic scale a fit of a Pois-

son distribution. It is known that random graphs follow the

Poisson distribution of node degrees [12]. Our graphs are

not random, but the spatially homogeneous allocation of

synapses of the clustering algorithm may explain the close

fit of the distribution for smaller values of ❏ . The devia-

tion from Poisson distribution for higher values of ❏ may be
attributed to the competitive biological mechanisms we de-

scribed in the previous section, which introduce some struc-

ture to the topology.

The average clustering coefficient as defined in [16, 12]

for the topologies we generated is 0.38. This is higher than

the value of 0.28 which was measured for the neural net-

work of the worm C. Elegans [12].

For the initial topology shown in Fig. 2, the network

stored 13 memory patterns before working-through. After

working through, 38.4% of the original patterns were still

stored , which shows that the network does adapt with the

simulation of working-through, freeing itself from some of

the “neurotic” states. For smaller values of ☞ the network

has learning difficulties, which suggests a difficulty in asso-

ciating unconscious memory traces among themselves and

with declarative memory. We have not yet explored this pa-

rameter dependency thoroughly, which we should continue

to do in future work.
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Figure 1. Network topology after clustering.
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synapses.

5 Conclusions

We have further developed the memory model presented

in [17] to include microscopic biological neuronal mecha-

nisms, and verified that the memory complex network self

organizes into a hierarchical clustered structure. This mem-

ory structure and functioning along with an adaptive learn-

ing process is used to explain a possible mechanism for neu-

rotic behavior and psychoanalytical working-through. We

are proceeding in further model refinement and analysis. It

is still necessary to test dependence of model behavior on

various parameters such as temperature and ☞ . We are very

interested in trying to map language structure and process-

ing into network topology and dynamics, although we are

not sure if this is possible. Although biologically plausible,

4



 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1  10

a
v
e
ra

g
e
 n

u
m

b
e
r 

o
f 

n
o
d
e
s
 w

it
h
 k

 l
in

k
s

number of links (k)

’node_degree_distribution’
26.7*4.8**x*exp(-4.8)/gamma(x+1.)
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in accordance with many aspects described by psychody-

namic and psychoanalytic clinical experience, and experi-

mentally based on simulations, the model is very schematic

and far from explaining the complexities of mental pro-

cesses. It nevertheless seems to be a good metaphorical

view of facets of mental phenomena, for which we seek a

neuronal substratum, and suggests directions of search.

We finish with a quote from the Introduction of [5], an

early work of Freud from late 1890’s, first published in

1950: “The intention is to furnish a psychology that shall be

a natural science: that is, to represent psychical processes

as quantitatively determinate states of specifiable material

particles, thus making those processes perspicuous and free

from contradiction.” Although Freud stopped work on this

model for lack of instruments at the time, these ideas per-

vaded all of his work, and it impresses one to see how his

ideas regarding the unconscious give strong insight into con-

temporary models of consciousness [4].

This research was developed with grants from the brazil-

ian National Research Council (CNPq), the Rio de Janeiro

State Research Foundation (FAPERJ) and the brazilian a-

gency which funds graduate studies (CAPES).
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