
SPRMI: Pure Java Based Shallow Persistent and Distributed Objects  

 
 

 Paulo Rogério da Motta Junior  
 prmottajr@uol.com.br  

 
Departamento de Informática, Universidade Federal Fluminense  

Rua Passo da Pátria, 156 / Bloco E, Niterói, RJ, Brasil 
+55 21 8705 8211 

 
 Getulio Moreira Maria Alice Brito 
 getuliogsm@hotmail.com malice@ime.uerj.br 

 
Instituto de Matemática e Estatística, Universidade do Estado do Rio de Janeiro 

Rua São Francisco Xavier, 524 / Bloco B – sala 6020, CEP: 20.550 – 013, Rio de Janeiro, RJ, Brasil 
 
 

 
Abstract 

In this paper, we present SPRMI, a Java package to 

support shallow persistent and distributed objects in a 
lightweight fashion. Its main characteristic is the shallow 
object instantiation capability. In other words, at the 
moment an object is instantiated, objects referenced by its 
attributes are not instantiated. This is achieved by the use 
of dynamic proxies as reference to objects of non 
primitive data types. These proxies use an identification 
strategy based on primitive data types that prevents direct 
references to target objects. Therefore, the serialization 
mechanism, when accessing remote or persistent objects, 
does not occur in a transitive way, because it is not 
possible to propagate through the object's composition 
graph. Three benefits can be derived from this ability: 1) 
parameters may be passed in a call-by-reference manner, 
during the invocation to a remote object, becoming closer 
to local parameter passing semantics; 2) the use of 
dynamic proxies drives the application towards 
transparency of persistence and distribution; and 3) it is 
possible to execute applications with large number of 
objects. 

Keywords 

Java RMI, Shallow Persistence and Distribution, Proxy.  

1. Introduction 
 

Considering the programming languages construction 
as our context, we have developed a simple library to add 
shallow instantiation to the read/write primitives and 
local/remote object access, available respectively on 
Object Input/Output Stream [1] and RMI [2] of Java’s 
basic API.  

In these primitives, serialization is used to support 
objects encoding, and the objects reachable from them, 
into a stream of bytes; and it supports the complementary 
reconstruction of the object graph from the stream [3]. 
This mechanism is an implementation of transitive 

persistence, the third principle of orthogonal persistence 
[4], stating that an object persists to execution if it is a 
persistence root or reachable from a root, by the 
references, recursively. 

This serialization mechanism is important and useful, 
however critics of the undesired side effects caused by it 
are not recent, for example, the performance inhibitor 
factor, with the use of Java RMI. The solutions for each 
of these factors, appointed on [5, 6, 7, 8, 9], tries to 
reduce the effects of the recursive process executed for 
object encoding and reconstruction. Besides that, risks 
arise from direct and indirect reachability from a remote, 
persistent object [10, 11].  

The solution, adding an indirection level on the object 
reference by the use of a proxy, is encouraged by the 
discussions found in [12, 13]. In [12], the authors make 
two choices, among others: 1) the use of a proxy to 
reference remote objects, and 2) the “instance methods 
execute on the node where the object was allocated, and 
not on the node where the reference is made”. On this 
way, structural solutions that extend Java RMI appeared, 
for example, the combination of smart proxy with 
interceptor [14], implemented by the Dynamic Proxy API 
[15], or the solution with fragmented-object model [16], 
that is similar to the smart proxy solution.  By these 
means, serialization may be avoided. 

Beyond these serialization effects, there are also some 
critics about the diversity of parameter passing semantics, 
defined for Java and Java RMI. Remembering that, in 
case of the formal parameter is declared with user-defined 
type, the real parameter is passed by reference on the 
local call. If it is a remote call and the real parameter is an 
instance of a class that implements the Remote interface, 
it is made by reference, but if the parameter class 
implements the Serializable interface instead of 
Remote, the call is made by value, with a copy of the 
parameter. With Array, local call is made by reference, 



and, differently, remote call, since array is 
Serializable by default, it is made by value with a 
copy of the array. The discussions, brought on [17, 18, 
19, 11, 8, 6], are about the semantics of parameter 
passing. Initially, it was specified for the language, as by 
value (semantic mode in), and its conflicting differences 
described above, making it uncertain to the programmer 
of which one was used on the client side. Although, by 
the language specification, the parameter passing 
definition is by value, the differences on the semantics 
described above are of public domain and the 
programmer is aware of the formal parameter type. 

About the risks of operating with 
persistence/distribution and overhead factors, in Java 
RMI, brought by serialization, the solutions for each of 
these followed two alternative paths: 1) the use of the 
recursive process executed for object encoding and 
reconstruction, or 2) the use of a proxy to reference 
remote objects, to avoid passing through serialization, in 
that each target object method is executed on the node 
that it resides on. 

On the persistence of distributed objects, that are 
present on some composition graph, when the structure of 
a proxy contains only primitive type attributes, the risks 
pointed in [10] do not rise. The proxy does not allow 
serialization to propagate throughout the composition 
path. In this way, each object may always be instantiated 
and persisted on its local residence, and, being this object 
an invocation target, the corresponding method is 
processed where this object lives [12]. 

Still with the proxy, the performance aspect may 
improve or get worse, depending on how much the 
objects are distributed on the composition graph of the 
target object and the parameters passed by reference. This 
is because, respectively, on one hand, the processing of 
each remote call is freed of the overhead caused by 
Serialization, but, on the other hand, it may appear some 
loss due to the increasing network traffic because of the 
many remote calls that may happen during the execution 
of the invoked remote method [11].  

Beyond the solutions presented above, the use of the 
proxy, with an object reference, may collaborate to the 
standardization of the parameter passing semantics, on the 
polemic case of formal reference types, becoming by-
reference, both on local and remote calls. 

These opportunities brought by the proxy, when used 
as user-defined object references, lead us to the choice of 
the structural solution, similar to the combination of the 
smart proxy with interceptor [14], in which we also use 
the Dynamic Proxy API, adding the persistence facility. 
By our solution, we define the instantiation of an object 
in the shallow mode. The class to the proxy instance 
implements the Serializable interface and its 
structure is based on primitive data types, to block 
Serialization recursion, on the object that is instantiated 
on-demand. Such a structure is reached, simply by filling 
the user-defined attributes with these proxies, causing one 
more indirection on the reference. This structure affects 
the mechanisms of both persistence, in Java Object 

Input/Output Stream primitives, and (un)marshalling, in 
Java RMI. 

If objects are structured in this shallow mode, each 
proxy-referenced object will only be instantiated on the 
invocation time, playing the role of invocation target. If, 
on the method execution of this invocation, other 
invocations to other target objects take place, these, will 
be instantiated, at the invocation time and so forth. These 
objects may be on the local or some remote machine, or 
even not been yet instantiated, due to being persistent. 
The attributes of primitive type are filled as on traditional 
Java programming. 

The shallow representation of these user-defined 
objects contributes to the standardization of the parameter 
passing semantics, when the formal parameter is of a 
user-defined type, making it in-out, in a fashion similar to 
call-by-reference on the local and remote calls. With this, 
the call-by-copy does not happen anymore, reducing the 
quantity of data transmitted on the remote call 
communication. This decrease in the amount of data helps 
to explain the better performance achieved by SPRMI, 
when compared to Java RMI, on the tests presented on 
section 3, balancing the loss with the increase in network 
traffic in expectation above. 

On the same time, the use of a dynamic proxy, as an 
indirect reference to persistent/remote objects, brings the 
opportunity to hide the persistence and distribution 
aspects from the application code, making these aspects 
transparent to the application programming. 

The choice for Object Input/Output Stream 
characterize our model as distributed lightweight 
persistence [20, 21], differently from the distributed 
heavy-weight database systems, that offer a lot of 
features, such as query management and consistency 
management. According to the authors, in [21], these 
lightweight models are needed for many applications at 
hand. 

The rest of this paper is organized as follows. In 
section 2, we present our persistency and remote access 
strategies, and also our architecture model together with 
its elements collaboration. In section 3, we bring an 
example and the application setup, to present how the 
library is used; and a performance comparison among 
original Java and our model, by some test results of 
remote calls parameters making references to objects 
which composition graph presents some density. In 
section 4 we describe related works. Section 5 concludes 
the paper and highlights future questions and works. 

2. Programming Model 
 

Our programming model is based on a simple 
persistence and distribution library that allows users to 
easily develop distributed and persistent applications by 
referencing objects through Dynamic Proxy API. These 
proxies use an Identifier class to hold information 
about object identification and location. Target objects 
are stored in simple object storages, implemented by a 
Hash Table, being the brokers the intermediary to access 



these storages on their hosts. The proxies, used to 
reference target objects, communicate with brokers 
through traditional RMI infrastructure to deliver method 
calls. The elements that compound our architecture are 
explained bellow, together with the description of the 
collaboration among them, so that the persistence and the 
arrangements for remote object method invocation work. 

 

2.1. Architecture Overview 
 

In order to incorporate persistence and distribution, 
the application needs to import SPRMI package and use 
the ShallowProxy class to create the references to 
objects. Although our package uses the traditional RMI 
infrastructure for communication, there is no need for 
objects both to be compiled with rmic and to be published 
on the rmiregistry. Instead, we developed a broker 
component that combined with the object persistent 
storage is responsible for object persistence and 
performing the method invocation on application target 
object. Figure 1 shows the Architecture representation 
with two hosts. Communication between objects takes 
place through the RMI connection that is established from 
a proxy to a broker and method calls are serialized, by 
reflection, in order to be sent. 

 
Figure 1. Architecture representation. 
Communication from a proxy to a broker 

Each object created by an application is accessed 
through a dynamic proxy and resides, on the persistent 
object storage, which is referenced by a broker attribute. 
The proxy is specified at instantiation time by a 
constructor call. Both objects and brokers are identified 
by unique system-wide numeric id that is requested at 
creation time, once assigned this id will not change and 
can be used to allow executions to resume from a 
persistent state. 
 

2.2. Prototype Considerations 
 

For the prototype that we developed, as a proof of 
concept, some issues were resolved in a naïve 
implementation and left for further improvement. These 
items are: 
• System-wide Identifier Store – considering that 

objects and brokers need to be uniquely identified 
throughout the system, it was necessary to have a 
way to generate unique identifiers based on some 

rule. For this end, we created a special entity that acts 
as an identifier store. It is accessed only inside the 
brokers. Although being already thread safe, this is a 
centralized entity that has to become distributed in 
the future. 

• Central Host – this is a virtual entity that holds the 
table of brokers that are part of the infrastructure in 
use. This role is assigned to a chosen broker and its 
network address and port are informed to other 
brokers at start-up. The importance of this entity is 
related to the ability to find other brokers. This 
centralized approach is recognized by us as a 
bottleneck for scalability and will have to be 
redesigned to become distributed in the future.  

• Broker checkpoints – an elaborated checkpoint 
strategy for broker persistence is out of the scope of 
this prototype. In order to maintain broker state 
properly, we choose to call the broker write 
method periodically. This basic approach allows 
infrastructure consistency. A note on broker 
persistence, it is based on the traditional Object 
Input/Output Stream [1] and not using SPRMI 
mechanism, by a natural reason, this is on the SPRMI 
implementation level. 

2.3. Architecture Terms 
 

The terms used for our architecture are as follows: 1) 
Target object – application object that is the destination of 
a method call; 2) Caller object – application object that is 
the origin of a method call; 3) Remote object – any 
application object that resides in a remote location 
regarding a certain broker. Remote objects are accessed 
via broker infrastructure, see bellow; 4) Immediate state – 
object’s set of primitive data type fields representing its 
real state; and 5) Referential state – object’s set of non-
primitive data types fields that represents references to 
other objects. References are made based on unique 
system-wide numeric identifiers. Non-primitive data 
types are also called user-defined types. 

Broker 
Our broker component, that implements the message 

broker pattern, is a RMI enabled class that is accessible 
through the rmiregistry service. It allows serialized 
method calls received from caller objects to be invoked 
on target objects that reside in its persistent object storage 
and returns the result of method calls, when present. Both 
caller and target objects can be local or remote. In 
SPRMI, method calls are serialized and transmitted 
through the network, once received by the broker, they 
are reconstructed by reflection mechanisms and 
effectively invoked on the target object. Each broker is 
identified by a unique system-wide numeric identifier. 
This identifier is used at run time to find and reference a 
broker to accomplish communication. The broker 
infrastructure uses a table of broker addresses indexed by 
broker identifiers. The process of broker search is 
encapsulated in a static method called findBroker that 



is implemented on the Broker class.  
The object store, accessed by the broker, relies on a Hash 
Table, which entries are of TableEntry type exclusive 
to each object stored, described ahead. 

Dynamic Proxies: Invocation Handler 
 

In SPRMI, objects are not directly referenced. To 
achieve our goal of shallow persistence it was necessary 
to break down the composition graph that Java creates for 
each object that declares fields of non-primitive data 
types. For that, we introduced a special proxy class that 
holds information about object identification and location, 
regarding the broker infrastructure. This information 
makes it possible for the proxy to communicate with the 
broker, where the target object resides in, to send 
serialized method calls. Using the findBroker method, 
described in the last section, a reference to the remote 
broker is received. With the broker reference at hand, it is 
possible to request that a method be invoked on a certain 
target object, which is known by the proxy through the 
object id that it keeps. Figure 2 presents how the object 
representation is modified by using dynamic proxies, 
consequently, causing one more level of indirection on 
the object references belonging to the composition graph.  

 
Figure 2. Object composition graph using dynamic 
proxies 

As we can see on Figure 2, when using dynamic 
proxies to reference target objects it is possible to 
overcome the deep composition that is used by the Java 
system. When an object is persisted with SPRMI only its 
immediate state gets saved, by immediate state we refer to 
object’s fields that are of primitive data types. We can 
think of fields that are of non-primitive data types as 
independent objects that have their own immediate state, 
and object persistence should not force referenced objects 
to be persisted. Instead, we should make persistence only 
the identification that allows us to reference those objects 
at run time and we do so by saving together, with the 
objects immediate state, all the proxy objects that holds 
the information to other objects. These effects 
characterize our conception as a structural model and lead 
us to make use of the shallow object instantiation 
solution. 

Object Persistent Storage and Table Entry 
The object persistent storage is implemented by the 

generic HashTable class, with the TableEntry class 
as its entries. We should remember that this reference is 
kept by an attribute on the broker.  

An instance of TableEntry may be briefly called 
entry.  It maintains the target object reference, the name 
of the file where the object resides, the class of the object 
and the identification of the object.  

When an application object is created, the dynamic 
proxy requests the broker to provide the creation of this 
object. On this action, an entry is created and included on 
the persistent storage, its attributes should be filled and 
the object must be persisted for the first time. At the end 
of the creation process on the broker, the object id is 
returned, and is kept in the proxy together with the broker 
id.  

The TableEntry class implements read and 
write methods that are responsible for individual object 
persistence, for that, a field keeps the file name. Other 
special method is the runMethod that is responsible for 
actually invoking methods on the target object. At this 
point, a verification is made to ensure that the target 
object is instantiated, if not, it is read from persistent 
storage to be instantiated, its reference is fulfilled, and the 
method then is, finally invoked. Once instantiated, the 
object remains in main memory. This measure produces 
the effect of on-demand object instantiation. 

Identifier 
The identifier is a simple class that has the object and 

broker identification and is used by dynamic proxies to 
find a reference to the broker, and by the broker’s object 
persistent storage, to find an object on storage. Another 
important role played by an instance of this class is to 
block the persistence recursion, due to its structure having 
primitive data type values. These identifiers are used on 
proxies. In its turn, in case of both local variables, 
parameters or attributes are declared with user-defined 
type, these proxies are used on them. 

Method calls 
The Java RMI method invocation specification 

expects that we reference the target object directly. From 
the application programmer’s perspective, there is no 
syntactic difference, but, with SPRMI mechanisms, the 
method call is serialized inside the proxies and sent to the 
broker where the target object resides in its object store. 
As explained, the broker will retransmit the method to the 
storage’s entry, which will reconstruct the method based 
on the target object’s reference, thus the invocation can 
take effect. We explain these processes bellow. 

Serializing method calls 
With SPRMI, the marshalling process is applied to the 

method, which is sent to be invoked by the broker. Once 
a caller object tries to process an invoke method, the 
proxy intercepts this invocation and passes it to the 
handler invoke method. The expected parameters for 
this method have to be as follows: a reference to the 
proxy object itself, a reference to the method that has to 
be executed on the target object and an array of the 



Object type, which holds the parameters to the target 
method. Since a reference to the target method can not be 
serialized to be sent over the network, we created a 
special class, RunMethodParameters, which 
instances holds: the method name, its argument array and 
the target object id. Such instance has all the requested 
information for the broker to reconstruct the method 

reference and perform the call. 
The proxy uses the broker identification maintained 

on the identifier object to find a reference to the target 
broker, which is accomplished through the findBroker 
method against the Central Host. Once this reference is 
returned the broker’s runMethod is executed passing 
the information for method reconstruction.

 
 

 
Figure 3. Representation of argument passing in SPRMI. In (i) the proxy is sent to the 
target object. In (ii) the proxy is used to call back referenced the object. 

 
 
Reconstructing method calls 

The runMethod implemented on the broker is 
exposed via the traditional RMI mechanism making it 
possible for proxies to execute it. This method 
receives the serialized information and rebuilds it on 
its original pieces, in order to call the runMethod, 
on the correspondent target object entry. It is worthy 
to note that both the broker and the entry has an 
instance method called runMethod, and the course 
is always first by the broker and then by the entry. On 
the entry, the runMethod receives the parameters: 
the method name and its arguments array, being these 
parameters used to recreate a call to the correct 
method. Using reflection mechanisms, we iterate 
through the arguments array to find its classes. This 
step is necessary due can exist another method with 
the same name, which difference relies on the 
parameter list. Once identified the proper method, it is 
invoked to the target object that is referenced by the 
entry. As explained earlier, if the target object is not 
instantiated in main memory, before method 
invocation, it has to be restored from permanent 
storage. Once the method is executed the return value 
is sent back to the client code. 
Argument passing 

When a method needs arguments for its execution, 
the invoke method of the corresponding proxy 
receives an array containing all the data that needs to 
be serialized and sent to the target object. Among this 
data, other proxies may be sent as arguments and will 
be reconstructed on the target object’s side. Once 
reconstructed, these proxies can be used by the target 
object’s methods to invoke methods on the objects 
referenced by them, and so on.  
Figure 3 represents an example scenario of this 
situation. Let’s consider two hosts A and B, a set of 
three objects called Obj1, Obj2 and Obj3. Using 

proxy references, Obj1 can reach Obj2 and Obj3 and 
through the proxy a method call is sent to Obj3 
passing Obj2’s proxy, as parameter. This call is 
shown on Figure 3-i, at left hand side. Once received 
the method call is reconstructed as explained above, 
and Obj3 receives a proxy that contains the 
identification that allows it to send a method call to 
Obj2 on the correct broker. This last situation is 
shown on Figure 3-ii, at right hand side. 

3. Experiments (Usage and Evaluation) 
 

From usage perspective, we consider our primary 
goal to provide programmers with a more flexible and 
easy-to-use tool to achieve application persistence and 
distribution. From quantitative point of view, we 
created a set of tests that compare two similar 
applications, using SPRMI and traditional RMI. 
Traditional RMI applications require the programmer 
to compile the server classes with a special compiler 
provided by Sun together with the JDK. Besides that, 
it is also necessary to implement some lookup 
techniques to bind the client and server together. If an 
object is to be sent from client to server, it must 
implement the Serializable interface. For 
SPRMI applications, no special compilation is 
necessary, however the Serializable interface 
constraint still holds. To make use of SPRMI 
capabilities, an interface for each user-defined type 
has to be created and all references to instances of 
these types must be made through these interfaces. 
The last requirement is to use a special method for 
object instantiation. 

Let consider, for example a user-defined Book 
class, it must implement the Serializable and 
a BookInt interface. The instantiation is as 
follows: 



BrokerInterface b = 
 Broker.findBroker("[ip 
address]"); 
BookInt obj =(BookInt) 
ShallowProxy.newInstance(b, new 
Book()); 

Although the object instantiation is modified to 
accomplish SPRMI initialization, the method 
invocation syntax of a local and transient target object 
is the same as for a remote and/or persistent one. Our 
advance, compared to Java’s Basic Persistence, is 
transparency, meaning that reads and writes and 
distribution aspects were hidden by the Dynamic 

Proxy and other intermediaries [22]. 
 

3.1. Experiments description  
 

The example application is a simple program 
which connects to a server object. It executes a remote 
method passing a local object reference as a 
parameter. The main goal for this experiment is to 
validate the behaviour, when the parameter grows in 
size and object composition in depth. There are 4 
steps on the experiment presented on figure 4 bellow.

 

 

Figure 4. Performance comparison between SPRMI and traditional RMI 

The figure above represents both maximum and 
minimum length of time for each technology on each 
step of the experiment. Each step was collected 
through a thousand calls to the remote method that 
receives the object argument. For the first step the 
argument was a simple object with three attributes of 
the String type and no references to other user data 
types. For the second step, composition depth was 
increased to level 2, with an attribute of a user data 
type, both technologies remain almost constant. For 
the third step, composition depth was increased again 
for 3 levels of user data type references, the number of 
objects increased by a factor around 10. On the third 
step traditional RMI technology gets a little above 
SPRMI, even though RMI is not carrying any 
persistence overhead. On the fourth and last step, 
composition depth was increased to level 4 and the 
number of objects again increased by a factor around 
10. For this last one, RMI time grows dramatically 
due to the size of the argument that is transmitted, 
however SPRMI grows by half the time RMI does 
even for a large number of objects. This can be 
accomplished by the reference through Dynamic 

Proxies, when transmitted over the network, only the 
remote objects ids are sent saving network bandwidth. 

3.2. Experiments setup  
 

Considering that brokers will be used as server 
objects they must be started prior to any application in 
order to establish the necessary communication 
infrastructure for the application’s objects. 
For our experiment we used a simple scenario using 
two distinct brokers. In order to simplify the start-up 
process, script files were developed allowing the easy 
execution of many test runs. For the broker to start 
executing it needs to receive four parameters: 1) its 
rmiregistry host, 2) its port, 3) the file name that will 
be used for its persistence and 4) the central host ip 
address. With these parameters the brokers will start 
by trying to resume the last run if the file exists, if not, 
they will reference the System Identifier Store in order 
to receive a valid unique id. Once the id is received, 
they register at the central host informing their id, ip 
address and port. After this step, they cycle through 
the checkpoint routine while waiting for requests from 
caller objects. 



4. Related Works 
 

Serialization has been considered a performance 
inhibitor factor, with the use of RMI, with overhead 
identified, as for example: the need to generate 
information that would need to be propagated through 
references [5]; the very slow way to examine and 
update unknown objects, in Java reflection [6];  the 
need to (un)serialize [7]; RMI supports 
polymorphism, which requires the system to be able 
to process type information at run time and download 
remote classes into a running application [8];  RMI is 
designed for wide-area and high-latency networks, it 
is based on a slow object serialization, and it does not 
support high- performance communication networks 
[9]. The solutions for each of these factors appointed 
try to improve the recursive process executed for 
object encoding and rebuilding in RMI.  

In the context of persistence with distributed 
objects, in addition to the performance loss, other 
problems may arise when we try reachability in 
graphs that have local and remote objects, as 
demonstrated by Susan Spence in PJRMI [10]. In this 
work, a support for remote method invocation in the 
context of the object-oriented, orthogonally-persistent 
system of the PJama Project, when there is an object 
on the graph that was not created to be persistent: 1) it 
will become persistent by reachability; and 2) in case 
it does become persistent, in which machine will it 
reside. These difficulties demanded a special support 
in PJRMI, to handle all the three situations: 1) 
Detecting no persistence by reachability; 2) 
Determining non-persistence of remotely target 
objects; and 3) Supporting the movement of stores 
between hosts. This approach was inserted in a Java 
RMI module called Distributed Garbage Collection.  

Another aspect in this context is the transparency 
of the persistence and distribution functionalities, that 
has been resolved with proxies [12, 13, 22, 14], 
allowing that programming do not need to distinguish 
the references between objects without/with special 
features added, like remote or persistent conditions. A 
reference to an object with additional features is 
represented by a proxy object that contains attributes, 
according to the functionality that it represents. 

The use of proxy results in one more indirection 
level on the object’s reference, what causes some 
resistance to its adoption. With this issue in sight, it is 
important to highlight some comments found in [12, 
13], that encourage its use. The two choices adopted, 
in [12]: 1) the use of proxy to reference remote 
objects, and 2) the “instance methods execute on the 
node where the object was allocated, and not on the 
node where the reference is made”. The arguments 
presented, in [13], about the Dynamic Proxy use 
created for an interface I, as a “consistent manner 

wherever an object of that type or any descendant type 
is expected”. These solutions with proxy influence the 
object structure, and this is the reason why they are 
called structural.  
In [14, 16], that are Java RMI extensions, the concept 
of proxy helps the distribution of the object 
composition parts. In [14], the structural model was 
achieved by the addition of smart stubs to RMI, being 
necessary an indirection level both on client and 
server. This stub is implemented by the Dynamic 
Proxy API. FORMI [16] is a RMI extension to 
support a flexible fragmented-object model, which 
reminds the smart proxy. 

These last two works are the most related to ours. 
They added facilities, without the client being aware, 
of the proxy or fragment. Our solution also includes 
the facilities under the proxy and is implemented by 
the Dynamic Proxy API, combined with a simple 
Broker, that, counts with and also simple object 
persistent storage, implemented via a Hash Table. The 
broker is a framework, that relies on Java RMI for 
communication, but that can be extended to use other 
communication means. 

Our solution is very simple and is characterized as 
structural. It is achieved by the shallow object 
instantiation, with user-defined attributes being filled 
with a proxy, which references objects by primitive 
type identifiers. With this, persistence by reachability 
is blocked, that means, the transitive persistence, the 
third principle of orthogonal persistence [4], is absent 
in our work. The instantiation of an object, either local 
or remote, will always occur on demand. Our work is 
pure Java with no changes, be it on the language, the 
object, the compiler or the JVM, relying on 
Serialization mechanisms and being lightweight 
(without consistency and query features) [21]. 

We bring the different parameter passing 
semantics question, because the proxy helps the 
standardization, in the case of the user-defined formal 
parameter.  In [19], is presented a new form of 
parameter passing, adding a copy clause to force the 
parameter copy of user-defined types, also called 
reference-type. In [18], CORBA and Java RMI are 
questioned, by the programmer point of view. In 
CORBA, by the need to use interfaces and, in RMI, 
by the need to implement the Remote interface, on the 
object class, forcing an anticipated decision of which 
objects should be local or remote. They present a 
library of Reflective Remote Method Invocation 
classes. This library supports Java RMI facilities, but 
is not tied to the JVM, and makes use of the ability to 
call methods using reflection, eliminating the need for 
a RemoteObject and stub/skeleton generation and 
thus make it possible for any object to be served and 
used remotely. With the intent to turning the 
parameter passing into reference-type, on the remote 



call, equal to the local call, the authors, in NRMI [6], 
achieved a modified version of the Java RMI. The 
complications of copy-restore, mainly, caused by 
aliasing references, were treated in an algorithm, that 
access all the reachable objects from the reference 
type real parameter. In NRMI, the programmer may 
select the call-by-copy-restore semantic, declaring a 
class to implement the Restorable interface. 

By our structural solution, in a local/remote call, 
when the real parameter is associated to a formal 
parameter of the user-defined type and is referenced 
by a proxy, the parameter passing semantics has the 
same effects as the Java local call, i.e., in out 
semantics mode. The differences on the parameter 
passing semantics for the Array type could not be 
resolved, because there are internal aspects out of our 
solution’s control.  The original parameter passing for 
primitive types already has preserved the same 
semantics for the local/remote calls.  

In the works above, there were also questions of 
where the solutions should be located, in a library, on 
the compiler, on the virtual machine and even on the 
communication protocols. Our work is a simple 
library that combines the facilities of object 
persistence and distribution, by use of RMI and 
Object Input/Output Stream primitives, reducing the 
effects of Java Object Serialization, with a structural 
solution via shallow instantiation of objects. This 
library does not offer facilities for consistency and 
query, characterizing, this way, as lightweight 
persistence. 

5. Conclusions 
 

Our work was lead by the structural solution, with 
the use of a proxy, implemented by the Dynamic 
Proxy API. The main characteristic of our model is 
the shallow instantiation of objects, achieved by the 
use of proxies on the user-defined type attributes, 
local variables and parameters that, on its turn, 
contains primitive type objects. On this way, the 
instantiation of an object does not cause the 
instantiation of the objects on its composition graph. 
This model brought the following contributions: 1) 
avoids the problems with distributed and persistent 
objects, accessible by reachability, properly 
illustrated, in [10]; 2) the standardization of the 
parameter passing semantics, when the formal 
parameter is of a user-defined type, in which the 
semantic is the same as the original Java local call, i.e, 
the parameter passing becomes call-by-reference. In 
this case, the real parameters are not anymore passed 
by copy; 3) this absence of copy reduces the amount 
of data on the communication of each remote call, 
improving performance. This happens even in 
composition graphs with greater distribution density, 

that cause an increase of remote calls, as can be seen 
by the results of the tests presented on section 3; 4) 
the transparency of persistence aspects compared to 
the Object Input Output Stream API; 5) if the objects 
can be on-demand instantiated, it becomes possible to 
execute applications with large numbers of objects. 
Another aspect of our library is the lack of features 
such as query management and consistency 
management with access to distributed storage, which 
gives it the lightweight distributed characteristic [20, 
21], being essential to avoid redundancy of 
functionalities of recovery and concurrency control in 
the protocols that we intend to extend. 

As future works, the broker that we implement 
needs to resolve garbage collection of objects that are 
no longer referenced. Other future work is to include 
concurrency control protocols and asynchronous 
mode calls, with Future, in a transparent fashion. 

 

References 
[1]  Sun Microsystems, “Object Input/Output Stream Java 

Object Serialization Specification”, 
http://java.sun.com/j2se/1.5.0/docs/guide/ 
serialization/spec/. 

[2]  Sun Microsystems, “Sun Java Remote Method 
Invocation Specification”, 
http://java.sun.com/j2se/1.5.0/docs/guide/ 
rmi/index.html. 

[3] Sun Microsystems, “Object Serialization”, 
http://java.sun.com/j2se/1.4.2/docs/guide/serialization/
. 

[4]  Atkinson, M.P., Bailey, P.J., Chisholm, K.J., 
Cockshott, W.P. & Morrison, R.. (1983) “An 
Approach to Persistent Programming”, Computer 
Journal 26, 4 pp 360-365. 

[5] Breg, F., Polychronopoulos, C. D. (2001) “Java 
Virtual Machine support for object serialization” In 
Special Issue: ACM 2001 Java Grande-ISCOPE 
(JGI2001) Conference. Geoffrey C. Fox., Illinois. 

[6]  Tilevich, E., Smaragdakis, Y. (2003) “NRMI: natural 
and efficient middleware”, In Proceedings. 23rd 
International Conference of Distributed Computing 
Systems. Atlanta. p. 449-460. 

[7]  Kono, K., Masuda, T.( 2000) “Efficient RMI : 
Dynamic Specialization of Object Serialization”, In: 
Proceedings. 20th International Conference on 
Distributed Computing Systems. Taiwan. pp 308-315. 

[8]  Maassen, J.,  Nieuwpoort, R., Veldema, R., Bal, H. E., 
Plaat, A. (1999) “An efficient implementation of 
Java's remote method invocation” In: Proceedings of 
the seventh ACM SIGPLAN symposium on Principles 
and practice of parallel programming. ACM Press, 
New York. pp 173 – 182. 

[9]  Nester, C., Philippsen, M., Haumache, B. (1999) “A 
more efficient RMI for Java”, In: Proceedings of the 
ACM 1999 conference on Java Grande. ACM Press, 
New York. pp 152 – 159. 



[10]  Spence, S. (1999) “PJRMI: Remote Method 
Invocation for a Persistent System”, In: Proceedings 
of the International Symposium on Distributed Objects 
and Applications. Edinburgh, United Kingdom. 

[11]  Spence, S. “Policies for Passing Objects by Copy 
between Widely Distributed Persistent Stores”, 
Regular Presentation to PODC 2000. University of 
Glasgow, Glasgow, Scotland, UK. 

[12]  Hicks, M., Jaganhattan, S., Kelsey, R., Moore, J. and 
Ungureanu, C. (1999) “Transparent Communication 
for Distributed Objects in Java”, In: Proceedings of 
the ACM 1999 Java Grande Conference. ACM Press, 
New York. 

[13]  Eugster, P., Baehni, S. (2002) “Abstracting Remote 
Object Interaction in a Peer-2-Peer Environment”, In: 
Proceedings of the ACM 2002 Java Grande 
Conference, ACM Press, New York. 

[14] Santos, H., Marques, P., Silva, L. (2002) “A 
Framework for Smart Proxies and Interceptors in 
RMI”, In: Proceedings of The 15th International 
Conference on Parallel and Distributed Computing 
Systems (PDCS - 2002). Louisville, KY, USA. 

[15] Microsystems., “Dynamic Proxy Classes”, 
http://java.sun.com/j2se/1.3/docs/guide/reflection/prox
y.html 

[16] Kapitza, R., Kirstein, M., Schmidt, H., Hauck, F. 
(2005) “FORMI: An RMI Extension for Adaptive 
Applications”, In: (RM´05) The 4th Workshop on 
Reflectives and Adaptive Middleware Systems of ACM 
International Conference Proceedings Series 
Grenoble, France. 

[17] Hof, M. (1999) “Object Model with Exchangeable 
Invocation Semantics”, In: ECOOP Workshop for Phd 

Students in OO Systems. 
[18] Thiruvathukal, G., Thomas, L., Korczynski, A. (1998) 

“Reflective Remote Method Invocation”, 
Concurrency: Practice and Experience, 10 (11-13): 
911-626, September-November. 

[19] Brose, G., Löhr, K., Spiegel, A. (1997) “Java Does 
Not Distribute”, In: Proceedings of Technology of 
Object Oriented Language and Systems. TOOLS 
Pacific´97, Melbourne, Australia, November. 

[20] Kappel, G., Schröder, B. (1998) “Light-Weight 
Persistence in Java - A Tour on RMI- and CORBA-
Based Solutions”, In: Proceedings of the Database 
and Expert Systems Applications: 9th International 
Conference (DEXA'98) Vienna, Austria, August. 
Springer, Berlin. 

[21] A., Kamil, A. (2005) “pobj: A Lightweight Persistent 
Objects Library and Its Application to Persistency in 
Titanium/Java”,   
http://www.eecs.berkeley.edu/~arnold/coursework/cs2
62a/pobj.pdf.  January. 

[22] Paal, S., Kammüller, R., Freisleben, B. (2003) “Java 
Remote Object Binding with Method Streaming”, In: 
Proceedings of the 4th International Conference for 
Objects, Components, Architectures, Services and 
Applications for a Networked World (NODE 2003). 
Erfurt, Germany, S. p. 230-244. 

 


	cabec321:  
	cabec331: 34:Cadernos do IME : Série Informática : Vol. 22 : Dezembro de 2006
	cabec341: Cadernos do IME : Série Informática : Vol. 22 : Dezembro de 2006 : 35
	cabec351: 36:Cadernos do IME : Série Informática : Vol. 22 : Dezembro de 2006
	cabec361: Cadernos do IME : Série Informática : Vol. 22 : Dezembro de 2006 : 37
	cabec371: 38:Cadernos do IME : Série Informática : Vol. 22 : Dezembro de 2006
	cabec381: Cadernos do IME : Série Informática : Vol. 22 : Dezembro de 2006 : 39
	cabec391: 40:Cadernos do IME : Série Informática : Vol. 22 : Dezembro de 2006
	cabec401: Cadernos do IME : Série Informática : Vol. 22 : Dezembro de 2006 : 41


