

Towards a set of techniques to implement Bump Mapping

Márcio da Silva Camilo, Bernardo Nogueira S. Hodge, Rodrigo Pereira Martins, Alexandre Sztajnberg

Departamento de Informática e Ciências da Computação

Universidade Estadual do Rio de Janeiro

{pmacstronger, bernardohodge, rodrigomartins, alexszt}@ime.uerj.br

Abstract.

The revolution of three dimensional video games

lead to an intense development of graphical techniques

and hardware. Texture-mapping hardware is now able to

generate interactive computer-generated imagery with

high levels of per-pixel detail. Nevertheless, traditional

single texture techniques are not able to simulate bumped

surfaces decently. More traditional bump mapping

techniques, such as Emboss bump mapping, most times

deploy an undesirable or ‘fake’ appearance to wrinkles in

surfaces. Bump mapping can be applied to different types

of applications varying form computer games, 3d

environment simulations, and architectural projects,

among others. In this paper we will examine a method that

can be applied in 3d game engines, which uses texture-

maps to generate bump surfaces in a flat polygon, called

Dot3 bump mapping. This method is based on normal-

perturbation technique and a vectorial operation

performed at each pixel which results on a correct light

calculation, and therefore great visual quality. We will

present the foundations of the bump mapping method, and

a technique proposal to apply it in a systematic form. We

have used this technique in the implementation of a game

engine that will be used as a case study.

1. Introduction

Irregular surfaces are a problem in real-time rendering for

they have much more geometrical complexity than a flat

surface, leading to a performance decrease of the

application.

Photorealistic rendering is a general aim in most

games today but real surfaces present a lot of bumps,

geometry addition is an overhead so great that most

present day hardware is not able to deal with. Single

texture mapping is not able to simulate wrinkles in a

surface, in the best case, a photo-real wrinkled texture can

be assigned to a polygon, but these textures won’t have a

different light calculation for the wrinkled part of it, as it

should for a realistic result.

Blinn [3] invented the bump mapping towards

solving this problem. Bump mapping is a normal-

perturbation rendering technique for simulating lighting

effects caused by irregularities on smooth surfaces. It can

be observed that bump mapping simulates a surface’s

irregular lighting appearance without modeling its

irregular patterns as true geometric perturbations,

increasing the model’s polygon count, hence decreasing

applications’ performance.

There are several other techniques for

implementing bump mapping. Some of them, such as

Emboss Mapping, do not result in a good appearance for

some surfaces, in general because they use a too simplistic

approximation of light calculation [4]. Others, such as

Blinn’s original bump mapping idea, are computationally

expensive to calculate in real-time [7]. Dot3 bump

mapping deploys a great final result on surface appearance

and is feasible in today’s hardware in a single rendering

pass. It is based on a mathematical model of lighting

intensity and reflection calculated for each pixel on a

surface to be rendered.

Our Dot3 bump mapping implementation is based

on normal perturbation encoded as RGB values on a

texture-map. This texture-map then can be fetched from an

image file and applied to a polygon using multi-textures

technique. For correct pixel color calculation, a Dot3

product is performed between the encoded normal and the

light vector. This operation is a very decent approximation

of real-world light calculations and gives us a great final

result.

We are going to present our implementation of

Dot3 bump mapping applied to a 3D game engine

renderpath. Our Dot3 implementation is based on OpenGL

fixed pipeline programming, OpenGL extensions, and

Tangent space transformation, which will also be

discussed in this paper. Advantages and disadvantages of

our Dot3 bump mapping implementation compared to

others will be discussed along the sections.

In the next section, Section 2, we present an

introduction to bump mapping and show how to store,

fetch and use normals for bump surfaces simulation. In

Section 3 we discuss the mathematics of Dot3 bump

mapping. In Section 4 we discuss Tangent space

calculation, a very important tool for dealing with

vectorial space issue in Dot3 bump mapping. Section 5 is

dedicated to a case study of our Dot3 bump mapping

implementation in a 3D first person shooter game engine.

Our conclusions are presented on section 6.

2. Dot3 Bump Mapping and normals 3. Mathematics of Dot3 Bump mapping

Games nowadays demand very high detail in graphics,

trying to simulate real world environments. The problem is

that real world surfaces are bumped, irregular and share

not much similarity with flat planes.

The mathematical foundation of Dot3 bump mapping is

based upon linear algebra operation dot product between

three-dimensional vectors.

Dot3 bump mapping is based on two tasks, the

calculation of a perturbed normal for a polygon and then

the light calculation with that normal. Each of these

operations must be performed at a fragment level (in our

case, the fragment level is a pixel), in a way that the light

will be calculated in a per-pixel basis. The pixel normal

information is obtained from the texture map, that can be

generated by a graphical software such as Adobe

Photoshop™. In this file the normals are encoded as the

RGB values of the texture itself.

In a first attempt, we have the idea of creating

these bumps and irregularities by modeling them with

traditional model creation. This approach can increase

geometry count of the models so much that is practically

impossible to be implemented in today’s hardware.

Dot3 Bump Mapping principle is based on the fact that in

the real world our perception of a bump in an irregular

surface if given by the different lightning compared to a

flat surfaces. This perception is proportional to the normal

vector and intensity of the light reflected by the surface.

These parameters can be variable depending on the surface

irregularity.

For the light calculation in Dot3 bump mapping

we use the Phong [1] model. Light intensity of a given

fragment in Phong model is given by equation (1):

Light calculation is, thus, defined by normals. In

a graphic application, normals can used to simulate

bumped surfaces in a flat plane. Figure 1 describes the

situation.

Intensity = Ambient + Diffuse * (N L) +

 Specular * (R V) ^ n (1)

Where:
L is the light vector Flat surface
N is the normal vector of a surface
R is the reflection vector
V is view position vector
N is the intensity of specular contribution.
Ambient is the ambient component light intensity
Diffuse is the diffuse component light intensity
Specular is the specular component light intensity

The basic operation we must perform is the Dot3

operation between the normal of the surface and the light

vector. Dot3 is a mathematical tool that allows us to

calculate the angle between two vectors. Dot3 product is

defined as (2):

Figure 1 - normals on flat and bumped surfaces

Additionally it is straight forward the possibility

to simulate bumps in a flat surface if we can artificially

introduce perturbation to the normals, as in Figure 2.

Being s and v two three dimensional vectors with

coordinates (x,y,z). Let Theta be the angle between these

vectors,

s v=(s.x*v.x+s.y*v.y+s.z*v.z) (2)

cos Theta =(s v)/ |s| |v|

Figure 2 - This Figure summarizes what Bump

mapping technique is

The classic formulation of bump mapping

developed by Blinn [3], based on the normal perturbation

technique, computes perturbed surface normals for a

surface as if a height field was displaced beneath the

unperturbed surface. The surface is then rendered and

illuminated based on the perturbed surface normals. These

computations are performed at each and every visible pixel

on the surface.

Irregular surface

(a)Open angle light incision (b) Narrow angle incision

Figure 3 - Light and normal vector disposition

It is simple to realize that in real world, greater

the angle between the light source and the normal of target

82 : Cadernos do IME : Série Informática : Vol. 15 : Dezembro de 2003

s will be written as (1,1,2) under W vectorial space. point to be lit, smaller will be the light intensity on this

point. This is the mathematical foundation for choosing

Dot3 operation as the light calculation operation. Figure 3

gives us a better idea.

Performing any vectorial operation between s and

a vector that belongs to W vectorial space should be

performed as sw = (1,1,3), and is very easy to see that if

the operation is performed with s under canonical

coordinates the result will be incorrect as inequation (3)

states.

The Dot3 operation perfectly fits in this description since

if the angle between the two vectors increases, their cosine

decreases (considering angles in the same quadrant).

Using the light model described above, is easy to realize

that if the Dot3 product results in a near zero or zero value,

for great angle values, fragment intensity will depend on

ambient contribution, which is a global illumination

component that affects all objects equally on a scene.

(1,2,6) (1,1,2) (3)

The second part of the equation deals with

specular component calculation. This term adds some

specular lighting that is some shininess when the light is

directly reflected in direction of the camera. This can be

easily explained: If light reflects in direction of the camera

the (R V) term will result a high value that will be added

to the fragment’s intensity value. n is a constant that

defines how much specular component will affect

fragment’s intensity. Blinn´s original formulation uses V

angle for specular highlights, our implementation uses the

Half-angle vector because it is easier to calculate and

achieves similar results.

OpenGL rendering is based on vectorial spaces

for rendering; two of the most important are Eye space and

Object space. The camera or ‘eye’ is under the Eye space.

Polygons to be rendered lie on Object space. As mentioned

above, a vector transformation is necessary to correctly

compute them in one vectorial space. A matrix

multiplication for writing a vector in different vectorial

spaces (each space has an associated matrix) can be used

for this transformation. OpenGL uses the Modelview-

Projection (MVP) matrix for correctly computing space

coordinates and placing them on screen [6].

Both spaces can be used for Dot3 bump mapping.

As long as we are working with textures for generating

bumps, it becomes natural to use a texture based vectorial

space, since embedded normal vectors belong to this

space. Next subsection introduces some Tangent Space

concepts.

Dot3 is the operation that allows Dot3 bump

mapping method to achieve great visual quality. Other

forms of bump mapping, as Emboss bump mapping, are

based on different light calculations, most of times not as

much accurate for a good final result.

4. Tangent Space 4.2 Tangent Space

Dot3 bump mapping is based on a vectorial operation

between light vector and an encoded normal. As every

vectorial operation, the vectorial space issue is

fundamental since it can lead to errors on calculations and

have a strong influence on applications performance.

Tangent space is also known as texture space, for it

matches the homogeneous (UV) coordinates on a texture.

Texture Image

Although Tangent space is not a necessary part of

dot3 bump mapping process, its implementation can lead

to significantly performance enhancement as well as

codification simplicity.

U Axis

4.1 Vectorial Spaces

Dot3 bump mapping is based on vectorial manipulation of

normal and light vector. A very important issue when

dealing with vectors is the vectorial space they belong.

Traditional Dot3 operation can be applied to every vector

composed by three coordinates, but unless they are under

the same vectorial space, the operation result will be

wrong. To understand this better, consider this example:

V Axis

Figure 4 - Homogeneous coordinates on a texture

image, also the coordinates of Tangent space

Several are the reasons for the choice of this

vectorial space. In Eye space, for instance, every time the

camera changes its position we need to recalculate and

renormalize vectors. In Object space, by its turn, it is not

necessary calculating Tangent and Binormal vectors, but

we cannot re-use textures that share UV mapping

coordinates and, besides, every time we rotate an object

we need to change the texture map that encode the

normals, since they will be pointing to a wrong direction

[5]. Tangent space in particular is well suited to be used

with techniques that use several model rotations and

Let s = (1,2,6) be a vector on a canonical (1,1,1) space.

Considering the W = (x,2y,3z) vectorial space,

(1,0,0) = (x,2y,3z)

(0,2,0) = (x,2y,3z)

(0,0,6) = (x,2y,3z)

x=1 ; y = 1 ; z = 2

Cadernos do IME : Série Informática : Vol. 15 : Dezembro de 2003 : 83

 translations such as Skeletal Animation for the reasons

explained above.

B

1
2

1
2

T

 There are several ways for calculating Tangent

Space. Our implementation of Dot3 is based on Binormal

and Tangent vectors. The Binormal vector follows the V

coordinate increasing direction. Tangent vector is U’s

coordinate correspondent vector. Tangent space

calculation can be divided in two steps: the computation of

Tangent and Binormal vectors for each vertex and the

calculation of a normal for these vertices. The procedure

for Tangent space calculation is described in the sequence.

 B

 T Algorithm 1
 Considering X the cross product operation between two

vectors. This operation results on a vector orthogonal to

the other two vectors. Considering triangle-based models

composed by 3 vertices v1,v2,v3 with x,y,z coordinates as

well as UV mapping coordinates. Binormal and Tangent

vectors for each vertex also composed by (x,y,z)

coordinates.

Figure 5 - Example of Tangent and Binormal vectors

Algorithm 1 computes Binormal and Tangent

vectors for each vertex of each triangle on scene to be

rendered. It is based on partial derivative theory that

defines Tangent and Binormal vectors[2]. Figure 5

exemplifies the final result of this procedure. The next

procedure is calculating the normal vector for each vertex.

By definition, Binormal and Tangent vectors follow the

same direction of the triangle surface. This way the normal

vector is orthogonal to these vectors as it is orthogonal to

the triangle itself. Algorithm 2 computes the normal

vector. After normal vector creation we have the 3 linearly

independent vectors used as a basis for Tangent space.

for each triangle on a scene to be rendered {

 //Cross product
 (x, y, z) =
 (v2.x - v1.x, v2.u - v1.u, v2.v - v1.v) X
 (v3.x - v1.x, v3.u - v1.u, v3.v - v1.v)
 if (x!=0) {
 // binormal is a unit length vector
 NORMALIZEVECTOR(x,y,z)

Algorithm 2 //Writing the x component of Tangent and
 //Binormal vectors based on partial Consider N the orthogonal vector to Tangent and

Binormal, ‘ ’ is a dot product operation, T is the Tangent

vector, B the Binormal vector, and Normal the Object

space vertex normal.

 //derivative theory definition
 v1->Tangent.x += -y/x;
 v1->Binormal.x += -z/x;
 v2->Tangent.x += -y/x;
 v2->Binormal.x += -z/x;
 v3->Tangent.x += -y/x;

for each vertex
 v3->Binormal.x += -z/x;

{
 }

 // vector normalization

 NORMALIZEVECTOR(B);
 //repeating the procedure for y coordinate

 NORMALIZEVECTOR(T);
 (x, y, z) =

 (v2.y - v1.y, v2.u - v1.u, v2.v - v1.v) X

 //cross product between tangent and binormal
 (v3.y - v1.y, v3.u - v1.u, v3.v - v1.v)

 N= Tangent X Binormal;
 if (x!=0) {

 NORMALIZEVECTOR(x,y,z)

 //correct orientation check
 v1->Tangent.y += -y/x;

 if N Normal < 0 v1->Binormal.y += -z/x;
 N = - N; v2->Tangent.y += -y/x;
} v2->Binormal.y += -z/x;

 v3->Tangent.y += -y/x;

The cross product on algorithm 2 can result on

any of the two orthogonal vectors to Tangent and

Binormal. To discover its actual orientation we use the

Object space normal vector associated with each vertex

and check if they have the same orientation by performing

a dot product. Using an incorrect orientation will result in

wrong light calculation as explained on section 3.

 v3->Binormal.y += -z/x;
 }

 //repeating the procedure for z coordinate
 (x, y, z) =
 (v2.z - v1.z, v2.u - v1.u, v2.v - v1.v) X
 (v3.z - v1.z, v3.u - v1.u, v3.v - v1.v)
 if (x!=0) {
 NORMALIZEVECTOR(x,y,z)

Finalizing this process, the next step is to convert

light vector used in Dot3 to Tangent space. The procedure

below performs this operation.

 v1->Tangent.z += -y/x;
 v1->Binormal.z += -z/x;
 v2->Tangent.z += -y/x;
 v2->Binormal.z += -z/x;

 v3->Tangent.z += -y/x;

Being Lo, light on Object space, Light_tangent a

three dimensional vector:

 v3->Binormal.z += -z/x;
 }
}

84 : Cadernos do IME : Série Informática : Vol. 15 : Dezembro de 2003

Light_tangent = (Lo T, Lo B, Lo N);

After these steps Tangent space calculation is

done. It is important to note that Tangent space

transformation is the most expensive part of Dot3 bump

mapping implementation, as previously explained the

generated overhead is counter balanced by the

performance enhancement in some situations. This

calculation can be done in the GPU (Graphics Processing

Unit) using vertex programs, but this requires

programmable pipeline compatible cards [5].

5. Dot3 bump mapping implementation

As previously mentioned Dot3 bump mapping can be

applied to different types of computer graphics

applications. Our implementation focused a 3D first

person shooter game engine. It was based on fixed pipeline

OpenGL programming for texture unit setup. Also we

used OpenGL extensions widely available on 3D

accelerator cards up to GeForce2 and compatible cards.

This implementation of Dot3 bump mapping can be

divided in 3 major steps, each one of them executing a

specific task, that, combined, perform the two operations

needed for method completion, computation of a perturbed

normal and the dot3 product operation between the

encoded normal and the light vector.

The first specific task is the transformation of

light vector, whether under Object, Eye, Tangent or any

vectorial space, into RGB values for later use as the

primary color in texture combining stage of the rendering

process. In this stage we will perform the dot3 operation

between normal and light vector. The conversion of light

vector (in our implementation, written under Tangent

space) can be coded as follows:

Being Light_tangent the light vector composed by three

coordinates (x, y, z). RGB are the Red, Green and Blue

color primitive values:

{
 R= 0,5 + Light_tangent.x * 0,5;
 G= 0,5 + Light_tangent.y * 0,5;
 B= 0,5 + Light_tangent.z * 0,5;
}

Rescaling these values is necessary since

OpenGL color values range from 0 to 1.

The second task deals with normal fetching. For

this implementation, encoded normals can be fetched and

applied as any texture map. One of the most common

ways of encoding normal values is storing them in a

texture-map, encoded as RGB values. This way we can

easily fetch normals as they can be loaded as a texture. For

instance, in standard OpenGL texture assignment can be

coded as:

Considering that an image (in any desired format) has

been read by a procedure and stored in a g_Texture

variable

glBindTexture(GL_TEXTURE_2D,g_Texture);
glEnable(GL_TEXTURE_2D);

Other techniques, as some Emboss bump

mapping implementations, require a special texture map

reading. Dot3 bump mapping does not require that: a

standard image reading procedure can be used.

In the third task we have to perform the Dot3

operation between light vector and the normals in a per-

pixel basis. OpenGL provides the DOT3_RGB_EXT

extension, which performs a Dot3 operation in every pixel

of a textured surface to be rendered. DOT3_RGB_EXT is

a constant sent to OpenGL pipeline to configure the

operation that the GPU will perform. This configuration is

set on texture environment setup. The dot3 operation will

use as operands the primary color for each vertex, which

encodes the light vector and a texture map that encode

normals. Our implementation configures texture

environment as:

{
 //This tells OpenGL to use texture combining
 //(pixel value multiplication)
 glTexEnvi(GL_TEXTURE_ENV,GL_TEXTURE_ENV_MODE,
 GL_COMBINE_EXT);

 //The combine operation to be performed
 //is a Dot3
 glTexEnvi(GL_TEXTURE_ENV,GL_COMBINE_RGB_EXT,
 GL_DOT3_RGB_EXT);

 //A texture containing encoded normals is
 //one of the sources to be used
 glTexEnvi(GL_TEXTURE_ENV,GL_SOURCE1_RGB_EXT,
 GL_TEXTURE);

 //The other is the light vector in Tangent
 //space, stored as primary color for
 //each vertex.
 glTexEnvi(GL_TEXTURE_ENV,GL_SOURCE0_RGB_EXT,
 GL_PRIMARY_COLOR_EXT);

 //Operates on RGB values.
 glTexEnvi(GL_TEXTURE_ENV,GL_OPERAND1_RGB_EXT,
 GL_SRC_COLOR);
 glTexEnvi(GL_TEXTURE_ENV,GL_OPERAND0_RGB_EXT,
 GL_SRC_COLOR);
}

After that Dot3 bump mapping process is

completed and all operations needed for normal

perturbation simulation will be executed.

Dot3 bump mapping combined with per pixel

lightning also can replace some effects of the traditional

lightmapping technique, used for years in game engines to

illuminate surfaces, without actually implemented lights.

One problem with this new approach is that now it is

necessary to correctly orient light vectors and their specific

components to achieve the desired illumination effect.

As said in Section 4, the operations performed for

calculating Tangent space add an overhead to the

traditional renderpath. But, fortunately, regarding the other

steps of the implementation, hardware today is able to

perform these operations on a single rendering pass.

Cadernos do IME : Série Informática : Vol. 15 : Dezembro de 2003 : 85

6. Conclusion

In this paper we investigated Dot3 bump mapping as a

method for simulating bumped surfaces, which, associated

to per-pixel lighting calculation, leads to high quality

scenes for game engines. Along the investigation we

developed a set of systematic techniques to apply this

method using OpenGL fixed pipeline and Tangent space

transformation.

We could use the proposed techniques in simple,

but comprehensive, examples. The code seams to be quite

reusable and the results were very satisfactory.

Nevertheless, during the implementation of the method

applied to the game engine we faced several problems

specially in debugging Tangent space transformation, due

to the large number of vertices and complex vectorial

operations performed in this algorithm. Other important

issue was defining a correct light vector orientation, in

order to achieve a correct illumination for scenes, which

was a matter of design, but in our case a wrong

configuration incurred in many days of debugging (the

scene was dark due to an incorrect light source

orientation).

As ongoing work we are implementing a Dot3

bump mapping in OpenGL programmable pipeline using

the vertex and fragment programs since this approach

allows much more control of the transformation and

lighting pipeline functions.

Comparing this technique to other bump mapping

techniques, Dot3 can result on much more realistic scene

result and, implemented using OpenGL extensions, does

not need special texture image reading procedures.

Computational overhead concerns on Dot3 bump

mapping, especially the Tangent space transformation, can

be easily attenuated by the increasing computational

power of today’s GPUs and their transformation and

lighting pipeline. In this way the results regarding

graphical enhancement of the Dot3 bump mapping is

worthy for OpenGL compliant cards that support the

necessary extensions.

Acknowledgements. The authors would like to

acknowledge the partial support from CNPq under process

number 552192/2002-3.

References

1. Bui Tuong Phong, “Illumination for Computer Generated

Pictures”, Communications of the ACM, 18(6), June 1975,

pp. 311-317.

2. Eric Desrosiers, “Vulgarisation of Tangent Space

calculation for triangle based mesh”, Available at

http://members.rogers.com/deseric/tangentspace.htm, July,

2003.

3. James Blinn, “Simulation of Wrinkled Surfaces,’’ Computer

Graphics (Proc. Siggraph ’78), August 1978, pp. 286-292.

Also in Tutorial: ComputerGraphics: Image Synthesis, pp.

307-313.

4. Jeff Molofee, “OpenGL Windows: Emboss bump mapping

tutorial”, Available at http://www.gamedev.net, July, 2003.

5. Jim Dietrich, “Texture Space Bump Maps’, NVIDIA

Corporation.

6. M. Woo; J. Neider, T. Davis and D. Shreiner, “OpenGL

Programming Guide”, Third Edition, Addison-Wesley,

1999.

7. Mark J. Kilgard, “A practical and robust bump-mapping

technique for today’s gpus”, In GDC 2000: Advanced

OpenGL Game Development, July 2000.

86 : Cadernos do IME : Série Informática : Vol. 15 : Dezembro de 2003

