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Abstract. 
 

The revolution of three dimensional video games 

lead to an intense development of graphical techniques 

and hardware. Texture-mapping hardware is now able to 

generate interactive computer-generated imagery with 

high levels of per-pixel detail. Nevertheless, traditional 

single texture techniques are not able to simulate bumped 

surfaces decently. More traditional bump mapping 

techniques, such as Emboss bump mapping, most times 

deploy an undesirable or ‘fake’ appearance to wrinkles in 

surfaces. Bump mapping can be applied to different types 

of applications varying form computer games, 3d 

environment simulations, and architectural projects, 

among others. In this paper we will examine a method that 

can be applied in 3d game engines, which uses texture-

maps to generate bump surfaces in a flat polygon, called 

Dot3 bump mapping. This method is based on normal-

perturbation technique and a vectorial operation 

performed at each pixel which results on a correct light 

calculation, and therefore great visual quality. We will 

present the foundations of the bump mapping method, and 

a technique proposal to apply it in a systematic form. We 

have used this technique in the implementation of a game 

engine that will be used as a case study.  

1.   Introduction 

Irregular surfaces are a problem in real-time rendering for 

they have much more geometrical complexity than a flat 

surface, leading to a performance decrease of the 

application.  

Photorealistic rendering is a general aim in most 

games today but real surfaces present a lot of bumps, 

geometry addition is an overhead so great that most 

present day hardware is not able to deal with. Single 

texture mapping is not able to simulate wrinkles in a 

surface, in the best case, a photo-real wrinkled texture can 

be assigned to a polygon, but these textures won’t have a 

different light calculation for the wrinkled part of it, as it 

should for a realistic result. 

Blinn [3] invented the bump mapping towards 

solving this problem. Bump mapping is a normal-

perturbation rendering technique for simulating lighting 

effects caused by irregularities on smooth surfaces. It can 

be observed that bump mapping simulates a surface’s 

irregular lighting appearance without modeling its 

irregular patterns as true geometric perturbations, 

increasing the model’s polygon count, hence decreasing 

applications’ performance. 

There are several other techniques for 

implementing bump mapping. Some of them, such as 

Emboss Mapping, do not result in a good appearance for 

some surfaces, in general because they use a too simplistic 

approximation of light calculation [4]. Others, such as 

Blinn’s original bump mapping idea, are computationally 

expensive to calculate in real-time [7]. Dot3 bump 

mapping deploys a great final result on surface appearance 

and is feasible in today’s hardware in a single rendering 

pass. It is based on a mathematical model of lighting 

intensity and reflection calculated for each pixel on a 

surface to be rendered. 

Our Dot3 bump mapping implementation is based 

on normal perturbation encoded as RGB values on a 

texture-map. This texture-map then can be fetched from an 

image file and applied to a polygon using multi-textures 

technique. For correct pixel color calculation, a Dot3 

product is performed between the encoded normal and the 

light vector. This operation is a very decent approximation 

of real-world light calculations and gives us a great final 

result. 

We are going to present our implementation of 

Dot3 bump mapping applied to a 3D game engine 

renderpath. Our Dot3 implementation is based on OpenGL 

fixed pipeline programming, OpenGL extensions, and 

Tangent space transformation, which will also be 

discussed in this paper. Advantages and disadvantages of 

our Dot3 bump mapping implementation compared to 

others will be discussed along the sections. 

In the next section, Section 2, we present an 

introduction to bump mapping and show how to store, 

fetch and use normals for bump surfaces simulation. In 

Section 3 we discuss the mathematics of Dot3 bump 

mapping. In Section 4 we discuss Tangent space 

calculation, a very important tool for dealing with 

vectorial space issue in Dot3 bump mapping. Section 5 is 

dedicated to a case study of our Dot3 bump mapping 

implementation in a 3D first person shooter game engine. 

Our conclusions are presented on section 6. 



2.   Dot3 Bump Mapping and normals 3. Mathematics of Dot3 Bump mapping 

Games nowadays demand very high detail in graphics, 

trying to simulate real world environments. The problem is 

that real world surfaces are bumped, irregular and share 

not much similarity with flat planes. 

The mathematical foundation of Dot3 bump mapping is 

based upon linear algebra operation dot product between 

three-dimensional vectors. 

Dot3 bump mapping is based on two tasks, the 

calculation of a perturbed normal for a polygon and then 

the light calculation with that normal. Each of these 

operations must be performed at a fragment level (in our 

case, the fragment level is a pixel), in a way that the light 

will be calculated in a per-pixel basis. The pixel normal 

information is obtained from the texture map, that can be 

generated by a graphical software such as Adobe 

Photoshop™. In this file the normals are encoded as the 

RGB values of the texture itself.  

In a first attempt, we have the idea of creating 

these bumps and irregularities by modeling them with 

traditional model creation. This approach can increase 

geometry count of the models so much that is practically 

impossible to be implemented in today’s hardware. 

Dot3 Bump Mapping principle is based on the fact that in 

the real world our perception of a bump in an irregular 

surface if given by the different lightning compared to a 

flat surfaces. This perception is proportional to the normal 

vector and intensity of the light reflected by the surface. 

These parameters can be variable depending on the surface 

irregularity. 

For the light calculation in Dot3 bump mapping 

we use the Phong [1] model. Light intensity of a given 

fragment in Phong model is given by equation (1): 

Light calculation is, thus, defined by normals. In 

a graphic application, normals can used to simulate 

bumped surfaces in a flat plane. Figure 1 describes the 

situation. 

 
Intensity = Ambient + Diffuse * (N L) + 

            Specular * (R V) ^ n              (1) 

 

Where:  
L is the light vector  Flat surface 
N is the normal vector of a surface  
R is the reflection vector  
V is view position vector  
N is the intensity of specular contribution.  
Ambient is the ambient component light intensity  
Diffuse  is the diffuse component light intensity  
Specular is the specular component light intensity  

  
The basic operation we must perform is the Dot3 

operation between the normal of the surface and the light 

vector. Dot3 is a mathematical tool that allows us to 

calculate the angle between two vectors. Dot3 product is 

defined as (2): 

 

 

Figure 1 - normals on flat and bumped surfaces 

 
Additionally it is straight forward the possibility 

to simulate bumps in a flat surface if we can artificially 

introduce perturbation to the normals, as in Figure 2. 

Being s and v two three dimensional vectors with 

coordinates (x,y,z). Let Theta be the angle between these 

vectors, 
 

 
 

s v=(s.x*v.x+s.y*v.y+s.z*v.z)                  (2) 
 

cos Theta =(s v)/ |s| |v| 
  
 

 

Figure 2 - This Figure summarizes   what Bump 

mapping technique is 

The classic formulation of bump mapping 

developed by Blinn [3], based on the normal perturbation 

technique, computes perturbed surface normals for a  

surface as if a height field was displaced beneath the 

unperturbed surface. The surface is then rendered and 

illuminated based on the perturbed surface normals. These 

computations are performed at each and every visible pixel 

on the surface. 

Irregular surface 

 

 

 

 

 

 

 

 

 

(a)Open angle light incision       (b) Narrow angle incision 

Figure 3 - Light and normal vector disposition 

It is simple to realize that in real world, greater 

the angle between the light source and the normal of target 
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s will be written as (1,1,2) under W vectorial space. point to be lit, smaller will be the light intensity on this 

point. This is the mathematical foundation for choosing 

Dot3 operation as the light calculation operation. Figure 3 

gives us a better idea. 

 

Performing any vectorial operation between s and 

a vector that belongs to W vectorial space should be 

performed as sw = (1,1,3), and is very easy to see that if 

the operation is performed with s under canonical 

coordinates the result will be incorrect as inequation (3) 

states. 

The Dot3 operation perfectly fits in this description since 

if the angle between the two vectors increases, their cosine 

decreases (considering angles in the same quadrant). 

Using the light model described above, is easy to realize 

that if the Dot3 product results in a near zero or zero value, 

for great angle values, fragment intensity will depend on 

ambient contribution, which is a global illumination 

component that affects all objects equally on a scene. 

 

 

(1,2,6) (1,1,2)  (3) 

 
The second part of the equation deals with 

specular component calculation. This term adds some 

specular lighting that is some shininess when the light is 

directly reflected in direction of the camera. This can be 

easily explained: If light reflects in direction of the camera 

the (R V) term will result a high value that will be added 

to the fragment’s intensity value. n is a constant that 

defines how much specular component will affect 

fragment’s intensity. Blinn´s original formulation uses V 

angle for specular highlights, our implementation uses the 

Half-angle vector because it is easier to calculate and 

achieves similar results. 

OpenGL rendering is based on vectorial spaces 

for rendering; two of the most important are Eye space and 

Object space. The camera or ‘eye’ is under the Eye space. 

Polygons to be rendered lie on Object space. As mentioned 

above, a vector transformation is necessary to correctly 

compute them in one vectorial space. A matrix 

multiplication for writing a vector in different vectorial 

spaces (each space has an associated matrix) can be used 

for this transformation. OpenGL uses the Modelview-

Projection (MVP) matrix for correctly computing space 

coordinates and placing them on screen [6]. 

Both spaces can be used for Dot3 bump mapping. 

As long as we are working with textures for generating 

bumps, it becomes natural to use a texture based vectorial 

space, since embedded normal vectors belong to this 

space. Next subsection introduces some Tangent Space 

concepts. 

Dot3 is the operation that allows Dot3 bump 

mapping method to achieve great visual quality. Other 

forms of bump mapping, as Emboss bump mapping, are 

based on different light calculations, most of times not as 

much accurate for a good final result. 

4.   Tangent Space 4.2   Tangent Space 

Dot3 bump mapping is based on a vectorial operation 

between light vector and an encoded normal. As every 

vectorial operation, the vectorial space issue is 

fundamental since it can lead to errors on calculations and 

have a strong influence on applications performance. 

Tangent space is also known as texture space, for it 

matches the homogeneous (UV) coordinates on a texture.  

 

Texture Image 

Although Tangent space is not a necessary part of 

dot3 bump mapping process, its implementation can lead 

to significantly performance enhancement as well as 

codification simplicity. 

U Axis

4.1   Vectorial Spaces 

Dot3 bump mapping is based on vectorial manipulation of 

normal and light vector. A very important issue when 

dealing with vectors is the vectorial space they belong. 

Traditional Dot3 operation can be applied to every vector 

composed by three coordinates, but unless they are under 

the same vectorial space, the operation result will be 

wrong. To understand this better, consider this example: 

V Axis

Figure 4 - Homogeneous coordinates on a texture 

image, also the coordinates of Tangent space 

Several are the reasons for the choice of this 

vectorial space. In Eye space, for instance, every time the 

camera changes its position we need to recalculate and 

renormalize vectors. In Object space, by its turn, it is not 

necessary calculating Tangent and Binormal vectors, but 

we cannot re-use textures that share UV mapping 

coordinates and, besides, every time we rotate an object 

we need to change the texture map that encode the 

normals, since they will be pointing to a wrong direction 

[5]. Tangent space in particular is well suited to be used 

with techniques that use several model rotations and 

 

Let s = (1,2,6) be a vector on a canonical (1,1,1) space. 

Considering the W = (x,2y,3z) vectorial space, 
 

(1,0,0) = (x,2y,3z) 

(0,2,0) = (x,2y,3z) 

(0,0,6) = (x,2y,3z) 
 

x=1 ; y = 1 ; z = 2 
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 translations such as Skeletal Animation for the reasons 

explained above.  

B

1
2 

1
2 

T

 There are several ways for calculating Tangent 

Space. Our implementation of Dot3 is based on Binormal 

and Tangent vectors. The Binormal vector follows the V 

coordinate increasing direction. Tangent vector is U’s 

coordinate correspondent vector. Tangent space 

calculation can be divided in two steps: the computation of 

Tangent and Binormal vectors for each vertex and the 

calculation of a normal for these vertices. The procedure 

for Tangent space calculation is described in the sequence. 

 

 

 

 

 B
 

 

 

  T Algorithm 1 
 Considering X the cross product operation between two 

vectors. This operation results on a vector orthogonal to 

the other two vectors. Considering triangle-based models 

composed by 3 vertices v1,v2,v3 with x,y,z coordinates as 

well as UV mapping coordinates. Binormal  and Tangent 

vectors for each vertex also composed by (x,y,z) 

coordinates. 

 

Figure 5 - Example of Tangent and Binormal vectors 

 

Algorithm 1 computes Binormal and Tangent 

vectors for each vertex of each triangle on scene to be 

rendered. It is based on partial derivative theory that 

defines Tangent and Binormal vectors[2]. Figure 5 

exemplifies the final result of this procedure. The next 

procedure is calculating the normal vector for each vertex. 

By definition, Binormal and Tangent vectors follow the 

same direction of the triangle surface. This way the normal 

vector is orthogonal to these vectors as it is orthogonal to 

the triangle itself. Algorithm 2 computes the normal 

vector. After normal vector creation we have the 3 linearly 

independent vectors used as a basis for Tangent space. 

 
for each triangle on a scene to be rendered { 
     
    //Cross product  
   (x, y, z) =  
      (v2.x - v1.x, v2.u - v1.u, v2.v - v1.v) X  
      (v3.x - v1.x, v3.u - v1.u, v3.v - v1.v) 
   if (x!=0) { 
     // binormal is a unit length vector 
     NORMALIZEVECTOR(x,y,z) 
 

Algorithm 2     //Writing the x component of Tangent and 
    //Binormal vectors based on partial Consider N the orthogonal vector to Tangent and 

Binormal, ‘ ’ is a dot product operation, T is the Tangent 

vector, B the Binormal vector, and Normal the Object 

space vertex normal. 

    //derivative theory definition  
     v1->Tangent.x += -y/x; 
     v1->Binormal.x += -z/x; 
     v2->Tangent.x += -y/x; 
     v2->Binormal.x += -z/x;  
     v3->Tangent.x += -y/x; 

for each vertex  
     v3->Binormal.x += -z/x; 

{ 
   } 

    // vector normalization 
 

    NORMALIZEVECTOR(B); 
    //repeating the procedure for y coordinate    

    NORMALIZEVECTOR(T); 
   (x, y, z) =  

     
       (v2.y - v1.y, v2.u - v1.u, v2.v - v1.v) X  

    //cross product between tangent and binormal 
       (v3.y - v1.y, v3.u - v1.u, v3.v - v1.v) 

    N= Tangent X Binormal; 
   if (x!=0) { 

 
     NORMALIZEVECTOR(x,y,z) 

    //correct orientation check 
     v1->Tangent.y += -y/x; 

    if N  Normal < 0      v1->Binormal.y += -z/x; 
       N = - N;      v2->Tangent.y += -y/x; 
}      v2->Binormal.y += -z/x; 

      v3->Tangent.y += -y/x; 

The cross product on algorithm 2 can result on 

any of the two orthogonal vectors to Tangent and 

Binormal. To discover its actual orientation we use the 

Object space normal vector associated with each vertex 

and check if they have the same orientation by performing 

a dot product. Using an incorrect orientation will result in 

wrong light calculation as explained on section 3. 

     v3->Binormal.y += -z/x; 
   } 
 
    //repeating the procedure for z coordinate 
   (x, y, z) =  
       (v2.z - v1.z, v2.u - v1.u, v2.v - v1.v) X  
       (v3.z - v1.z, v3.u - v1.u, v3.v - v1.v) 
   if (x!=0) { 
     NORMALIZEVECTOR(x,y,z) 

Finalizing this process, the next step is to convert 

light vector used in Dot3 to Tangent space. The procedure 

below performs this operation. 

     v1->Tangent.z += -y/x; 
     v1->Binormal.z += -z/x; 
     v2->Tangent.z += -y/x; 
     v2->Binormal.z += -z/x; 

      v3->Tangent.z += -y/x; 

Being Lo, light on Object space, Light_tangent a 

three dimensional vector: 

     v3->Binormal.z += -z/x; 
   } 
} 
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Light_tangent = (Lo  T, Lo  B, Lo  N);  

 

After these steps Tangent space calculation is 

done. It is important to note that Tangent space 

transformation is the most expensive part of Dot3 bump 

mapping implementation, as previously explained the 

generated overhead is counter balanced by the 

performance enhancement in some situations. This 

calculation can be done in the GPU (Graphics Processing 

Unit) using vertex programs, but this requires 

programmable pipeline compatible cards [5]. 

5. Dot3 bump mapping implementation 

As previously mentioned Dot3 bump mapping can be 

applied to different types of computer graphics 

applications. Our implementation focused a 3D first 

person shooter game engine. It was based on fixed pipeline 

OpenGL programming for texture unit setup. Also we 

used OpenGL extensions widely available on 3D 

accelerator cards up to GeForce2 and compatible cards. 

This implementation of Dot3 bump mapping can be 

divided in 3 major steps, each one of them executing a 

specific task, that, combined, perform the two operations 

needed for method completion, computation of a perturbed 

normal and the dot3 product operation between the 

encoded normal and the light vector. 

The first specific task is the transformation of 

light vector, whether under Object, Eye, Tangent or any 

vectorial space, into RGB values for later use as the 

primary color in texture combining stage of the rendering 

process. In this stage we will perform the dot3 operation 

between normal and light vector. The conversion of light 

vector (in our implementation, written under Tangent 

space) can be coded as follows: 

 

 

Being Light_tangent the light vector composed by three 

coordinates (x, y, z). RGB are the Red, Green and Blue 

color primitive values:  
 

{ 
  R= 0,5 + Light_tangent.x * 0,5; 
  G= 0,5 + Light_tangent.y * 0,5; 
  B= 0,5 + Light_tangent.z * 0,5; 
} 

 

Rescaling these values is necessary since 

OpenGL color values range from 0 to 1. 

The second task deals with normal fetching. For 

this implementation, encoded normals can be fetched and 

applied as any texture map. One of the most common 

ways of encoding normal values is storing them in a 

texture-map, encoded as RGB values. This way we can 

easily fetch normals as they can be loaded as a texture. For 

instance, in standard OpenGL texture assignment can be 

coded as: 

 

Considering that an image (in any desired format) has 

been read by a procedure and stored in a g_Texture 

variable  

 
glBindTexture(GL_TEXTURE_2D,g_Texture); 
glEnable(GL_TEXTURE_2D); 

 

Other techniques, as some Emboss bump 

mapping implementations, require a special texture map 

reading. Dot3 bump mapping does not require that: a 

standard image reading procedure can be used. 

In the third task we have to perform the Dot3 

operation between light vector and the normals in a per-

pixel basis. OpenGL provides the DOT3_RGB_EXT 

extension, which performs a Dot3 operation in every pixel 

of a textured surface to be rendered. DOT3_RGB_EXT is 

a constant sent to OpenGL pipeline to configure the 

operation that the GPU will perform. This configuration is 

set on texture environment setup. The dot3 operation will 

use as operands the primary color for each vertex, which 

encodes the light vector and a texture map that encode 

normals. Our implementation configures texture 

environment as: 
 

{ 
  //This tells OpenGL to use texture combining 
  //(pixel value multiplication) 
  glTexEnvi(GL_TEXTURE_ENV,GL_TEXTURE_ENV_MODE, 
            GL_COMBINE_EXT); 
 
  //The combine operation to be performed  
  //is a Dot3 
   glTexEnvi(GL_TEXTURE_ENV,GL_COMBINE_RGB_EXT, 
             GL_DOT3_RGB_EXT); 
 
  //A texture containing encoded normals is  
  //one of the sources to be used 
  glTexEnvi(GL_TEXTURE_ENV,GL_SOURCE1_RGB_EXT, 
            GL_TEXTURE); 
 
   //The other is the light vector in Tangent  
   //space, stored as primary color for  
   //each vertex. 
  glTexEnvi(GL_TEXTURE_ENV,GL_SOURCE0_RGB_EXT, 
            GL_PRIMARY_COLOR_EXT); 
    
   //Operates on RGB values. 
  glTexEnvi(GL_TEXTURE_ENV,GL_OPERAND1_RGB_EXT, 
            GL_SRC_COLOR); 
  glTexEnvi(GL_TEXTURE_ENV,GL_OPERAND0_RGB_EXT, 
            GL_SRC_COLOR); 
} 
 

After that Dot3 bump mapping process is 

completed and all operations needed for normal 

perturbation simulation will be executed. 

Dot3 bump mapping combined with per pixel 

lightning also can replace some effects of the traditional 

lightmapping technique, used for years in game engines to 

illuminate surfaces, without actually implemented lights. 

One problem with this new approach is that now it is 

necessary to correctly orient light vectors and their specific 

components to achieve the desired illumination effect.  

As said in Section 4, the operations performed for 

calculating Tangent space add an overhead to the 

traditional renderpath. But, fortunately, regarding the other 

steps of the implementation, hardware today is able to 

perform these operations on a single rendering pass.  
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6.   Conclusion 

In this paper we investigated Dot3 bump mapping as a 

method for simulating bumped surfaces, which, associated 

to per-pixel lighting calculation, leads to high quality 

scenes for game engines. Along the investigation we 

developed a set of systematic techniques to apply this 

method using OpenGL fixed pipeline and Tangent space 

transformation. 

We could use the proposed techniques in simple, 

but comprehensive, examples. The code seams to be quite 

reusable and the results were very satisfactory. 

Nevertheless, during the implementation of the method 

applied to the game engine we faced several problems 

specially in debugging Tangent space transformation, due 

to the large number of vertices and complex vectorial 

operations performed in this algorithm. Other important 

issue was defining a correct light vector orientation, in 

order to achieve a correct illumination for scenes, which 

was a matter of design, but in our case a wrong 

configuration incurred in many days of debugging (the 

scene was dark due to an incorrect light source 

orientation).  

As ongoing work we are implementing a Dot3 

bump mapping in OpenGL programmable pipeline using 

the vertex and fragment programs since this approach 

allows much more control of the transformation and 

lighting pipeline functions. 

Comparing this technique to other bump mapping 

techniques, Dot3 can result on much more realistic scene 

result and, implemented using OpenGL extensions, does 

not need special texture image reading procedures. 

Computational overhead concerns on Dot3 bump 

mapping, especially the Tangent space transformation, can 

be easily attenuated by the increasing computational 

power of today’s GPUs and their transformation and 

lighting pipeline. In this way the results regarding 

graphical enhancement of the Dot3 bump mapping is 

worthy for OpenGL compliant cards that support the 

necessary extensions.  
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