
Data Compression and Error Detection Integration

Paulo E. D. Pinto

UERJ, Universidade Estadual do Rio de Janeiro, RJ, Brasil.

Fábio Protti

Universidade Federal do Rio de Janeiro, Instituto de Matemática and NCE, RJ, Brasil.

Jayme L. Szwarcfiter

Universidade Federal do Rio de Janeiro, Instituto de Matemática, NCE and COPPE,RJ, Brasil.✁

Abstract

Hamming [4] proposed, in 1980, the Hamming Huffman

Trees, structures for data compression, which can combine

the Huffman encoding with the noise protection of Ham-

ming encoding. Those structures can detect 1 bit-errors

introduced during transmission of compressed data. This

work extends that proposal and discusses the Odd Detec-

tion Tress (ODT), whose basic property is to detect any odd

number of wrong bits introduced in a message. It is pre-

sented the special case where the frequencies are constant

and the Optimal ODT are caracterized for this situation. It

is highlighted the low cost for the addition of that feature,

related to Huffman. It is also discussed one algorithm to the

general case.

1 Introduction

Data compression is an area of permanent interest in Com-

puter Science and, although it has produced relevant results

since the 50’s [5], it is still on a continuous evolution. New

approaches to old problems have emerged, and new pro-

blems have come to light due to the Internet. The latter

ones must deal with big data volumes, where compression

is an economic imperative [1].

The most traditional method of compression is the Huff-

man method, which is very efficient and is based on statis-

tics over ocurrences of single symbols (or aggregates of

symbols) in a data set. This method constructs a binary

tree for coding/decoding symbols, and each one of them

is represented by a leaf of the tree. The encoding of a

symbol ✂ is given by the path from the root of the tree

to the leaf corresponding to ✂ , adding a bit ✄ (resp. ☎)

when the path goes down to the right (resp. left) child of a

node. It is not surprising that we can find in the literature a

great number of new approaches and adaptations based on

this method [3]. One of these proposals is described in the

book by Richard Hamming, Coding and Information The-

ory [4], which is known by its deep treatment of error de-

tection/correction in data transmition. Hamming proposed

a new data structure, the Hamming-Huffman Tree, which

combines the advantages of the Huffman compression with

the noise protection of Hamming codes – tasks which are

nowadays performed separatedly when processing network

transmition/reception. However, Hamming-Huffman Trees

have not received further developments, and remain up to

now as an open field of research.

The present work is based on this idea. We discuss the

structure proposed by Hamming and present a new alter-

native, the Odd Detection Trees (for simplicity, called here

ODTs.)

1.1 Hamming-Huffman Trees

As said above, Hamming-Huffman Trees (HHTs) are in-

tended to combine the benefits of Huffman compression

with the noise protection of Hamming codes. The idea is

that the data coding itself should contain redundancies that

allow the detection of certain kinds of errors. In Hamming’s

proposal, all the 1-bit errors introduced during the transmis-

sion would be detected when received. This is equivalent to

forbid certain encodings which, when present in the recep-

tion, would signal an error. Similarly to the Huffman Trees,

HHTs are strictly binary trees whose leaves corespond to

encodings. However, error leaves are also introduced in

such a way that, for each encoding, every possible change

in one bit due to a transmission error leads to one of these

error leaves when decoding.

We present below an example from [4], p.76. The fre-

quencies are assumed to be equal. Table 1 shows the sym-

bols and their corresponding encodings. Figure 1 shows the

corresponding HHT.

Character Encoding

a 000

b 0110

c 1010

d 1100

e 1111

Table 1. Example of a Hamming-Huffman

Code.

e

a

dcb

Figure 1. HHT for symbols
In the above example, the prefixes ☎ ☎ ✄✂✁ ☎ ✄ ☎✄✁ ☎ ✄ ✄ ✄✂✁ ✄ ☎ ☎✄✁

✄ ☎ ✄ ✄✂✁ ✄ ✄ ☎ ✄ and ✄ ✄ ✄ ☎ are forbidden prefixes and, when

occurring in the decoding process, they signal a change of

one bit in a given encoding.

ODTs enlarge the initial Hamming’s proposal, since they

aim to detect not only one but all the errors ocurring an odd

number of times, introduced in a encoded message. Let us

first characterize the Odd Detection Codes (ODCs.)

2 Odd Detection Codes

Let ☎ be a finite alphabet. An encoding for a givem sym-

bol ✂✝✆✝☎ is a finite sequence of ☎ ’s and ✄ ’s associated to ✂ .

Each ☎ or ✄ is a bit of the encoding. The bits of an encoding

are labeled ✄✂✁✟✞✠✁☛✡✄✁✌☞✌☞✌☞ , from left to right. The size of an en-

coding ✍ is the label of the rightmost bit in ✍ . The segment✎✑✏ ✍✑✁✓✒✟✁✕✔✗✖ is the subsequence of ✍ starting at the bit labelled

✒ and ending at the bit labelled ✔ .

An Odd Detection Code (ODC) for ☎ is a set ✘ of dis-

tinct encodings associated to the symbols of ☎ , having the

following properties:

1. It is a prefix code, that is, no encoding is a prefix of

any other one. This is necessary to avoid ambiguity

when decoding messages

2. When decoding a message, it allows the detection of

an odd number of spurious bits in the encoded mes-

sage

The following properties of an ODC are easily verifiable:

1. In an ODC ✘ , for each pair of distinct encodings

✍✚✙✛✁☛✍✢✜✣✆✤✘ with ✥ ✍✚✙☛✥✧✦★✥ ✍✢✜✗✥ , the following property

holds: ✍✚✙ and the initial segment ✎✑✏ ✍✌✜✂✁ ✄✂✁✚✥ ✍✚✙☛✥ ✖ of ✍✢✜
are different. This is a direct consequence of the def-

inition of an ODC.

2. Encodings with the same size have the same parity

(the parity of an encoding is the parity of the number

of ✄ ’s it contains.)

These properties are necessary but not sufficient in order

to guarantee that a code is actually an ODC. However, if

we restrict the second property by adopting only encodings

with even parity, then we do have a sufficient condition to

assure the existence of an ODC, according to the following

theorem:

Theorem 1 Let ✘ be a code satisfying the following prop-

erties:

1. for each pair of distinct encodings ✍✩✙✛✁☛✍✢✜✪✆✫✘ with

✥ ✍✚✙☛✥✗✦✬✥ ✍✢✜✗✥ , ✍✚✙ and ✎✑✏ ✍✢✜✩✁ ✄✂✁✚✥ ✍✚✙☛✥ ✖ are distinct;
2. all the encodings in ✘ have even parity.

Then ✘ is an ODC.

Proof: Let ✘ be a code with the above properties. The first

property means that ✘ is a prefix code. The second one

means that, initially, the message has even parity and that,

during the decoding process, if a character is recognized

then the corresponding segment has even parity. If an odd

number of spurious bits are introduced in the message, its

parity becomes odd. Consequently, even if some segments

are wrongly recognized during the decoding process, in the

worst case the last segment has odd parity and the error

is signaled. Therefore any introduction of an odd number

of spurious bits will be detected and consequently ✘ is an

ODC.

Given an ODC ✘ , it is easy to see that we can find

another equivalent ODC ✘✮✭ , where all the encodings have

even parity. The equivalence to ✘ means that there is a bi-

jection between the elements of ✘ and ✘✮✭ , such that the

corresponding elements have the same size. In order to

find such a ✘✯✭ , it is enough to order the encodings accor-

ding to their size and perform the following procedure: Let✰✠✱ ✁ ✰✑✲ ☞✌☞✌☞✌✁ ✰✗✳ be the distinct encoding sizes appearing in ✘ .

For ✒✵✴ ✄✂✁✌☞✌☞✌☞✢✁✟✶ , take the encodings with size
✰ ✙ and, in

case that those encodings have odd parity, change the bit

with label
✰ ✙ in all encodings with size equal to or greater

than
✰ ✙ . Therefore, ✘✮✭ is ODC. Consequently, all the ODC

codes we will refer to are supposed to have even parity.

Given an alphabet ☎✷✴✹✸ ✎ ✱ ✁ ✎ ✲ ✁✌☞✌☞✌☞✌✁ ✎✻✺✽✼ with correspon-

ding non-negative access frequencies ✏✿✾ ✱ ✁ ✾ ✲ ✁✌☞✌☞✌☞✌✁ ✾❀✺ ✖ , an

46 : Cadernos do IME : Série Informática : Vol. 15 : Dezembro de 2003

Optimal ODC (OODC) ✘ for ☎ is one minimizing the size

of the encoded message. The problem of finding an OODC

can be stated as follows:

Input: An alphabet ☎✬✴ ✸ ✎ ✱ ✁ ✎ ✲ ✁✌☞✌☞✌☞✌✁ ✎✻✺✽✼ , ✁✄✂ ✄ , and

a vector of corresponding non-negative integer access fre-

quencies ✏✿✾ ✱ ✁ ✾ ✲ ✁✌☞✌☞✌☞✌✁ ✾❀✺ ✖ .
Output: An ODC ✘ for ☎ that minimizes the objec-

tive function ✾ ✴✆☎
✺
✙ ✝ ✱ ✾ ✙✛☞ ✰ ✙ , where

✰ ✙ is the size of the

encoding corresponding to ✎ ✙ in ✘ .

2.1 Odd Detection Trees

Prefix codes can be represented by binary trees, and this

fact allows to deduce some properties of the code from the

properties of the associated binary tree. In what follows, we

show how this association is done and study the resulting

trees, especially the characterization of OODCs. All con-

cepts related to binary trees are used from [2, 6].

Every ODC can be represented by a strictly rooted bina-

ry tree, where three kinds of nodes are used: internal nodes,

encoding leaves and error leaves. The encoding leaves con-

tain the alphabet symbols. The path from the root to each

leaf is equivalent to the encoding assigned to the symbol

represented by that leaf, where bit 0 corresponds to a left

edge in the path and bit 1 to a right edge. In the deepest

level of the tree, every encoding leaf has a sibling which is

an error leaf. Sometimes, error leaves occur in intermediate

levels. Error leaves are intended to signal errors. Figure 2

shows ODTs for one, two and three encodings.

a b

a

a

b

c

Figure 2. Examples of ODTs

An Odd Detection Tree (ODT) for ✁ encodings is a

rooted strictly binary tree with ✁ leaves having even pari-

ty. Leaves with odd parity are error leaves. An Odd Detec-

tion Tree type II (ODT-II) for ✁ encodings is the resulting

tree by inverting the left and right subtrees of the root in an

ODT. Consequently, all the encodings in a ODT-II have odd

parity.

3 Optimal Odd Detection Trees

From now on, we will characterize the Optimal Odd De-

tection Trees (OODTs).

An Optimal Odd Detection Tree (OODT) is an ODT as-

sociated to an OODC. An Optimal Odd Detection Tree type

II (OODT-II) is the resulting tree by inverting the left and

right subtrees of the root in an OODT.

The ODTs presented in Figure 2 are also OODTs. It

is easy to see that, for ✁ ✴ ✄✂✁✟✞✠✁☛✡ , there exists only one

possible OODT for each value (exactly the ones presented),

independently of the frequencies.

The problem of finding an OODC can be translated in

terms of OODTs. Given an alphabet with ✁ symbols and

its frequencies, the problem is equivalent to find an ODT

whose Weighted Encoding External Path Length (WEEPL)

is minimum. The WEEPL is the subsum of the Weighted

External Path Length of an ODT by considering only the

encoding leaves.

Let us define a special kind of ODT. An Equilibrated

ODT with ✁ encodings is an ODT satisfying the following

property:

✞ for ✁ ✦ ✡ , it is one of the trees in Figure 2

✞ for ✁✟✂ ✡ , its left subtree is an Equilibrated ODT

having ✠ ✁☛✡ ✞✌☞ encoding leaves, and its right subtree is

an Equilibrated ODT-II having ✍ ✁☛✡ ✞✌✎ encodings. (An

Equilibrated ODT-II is an ODT-II constructed from

an Equilibrated ODT.)

The ODT presented in Figure 3 is an Equilibrated ODT

for 11 encodings.

a d

j

g

c

k

h

i

f

b

e

Figure 3. Equilibrated ODT for 11 encodings

First, let us consider the special case of an OODT where

the frequencies are equal. We will assume thal all frequen-

cies are one. Consequently, the WEEPL will be equal to the

Encoding External Path Length of an OODT.

3.1 OODT for encodings with equal frequencies

The basic principle used to find an OODT when the fre-

quencies are equal is that this problem has an optimal sub-

structure, which means that the subtrees envolved are also

optimal. There are a few special issues to consider, for in-

stance the fact that some subtrees, as we shall see, cannot

have only one encoding. This fact leads to an efficient dy-

namic programming algorithm to solve the problem, based

Cadernos do IME : Série Informática : Vol. 15 : Dezembro de 2003 : 47

on the recurrence given by Theorem 2. Let ✏ ✁ ✖ be the En-

coding External Path Length of an OODT with ✁ encodings,

where all the frequencies are equal to one.

Theorem 2

 ✏ ✁ ✖ ✴
✁✂✂✄ ✂✂☎

✄✂✁ if ✁ ✴ ✄
✡✄✁ if ✁ ✴ ✞✁✝✆✟✞✡✠ ☛ ✸☞ ✏ ✁✍✌ ✄✚✖ ✁✞✡✠ ☛✏✎✒✑✔✓✕✑✔✖☞✗✘✎ ✸☞ ✏ ✒✛✖ ✆ ✏ ✁✍✌ ✒✛✖ ✼✂✼ ✁ if ✁ ✂ ✞

Proof: The results for ✁ ✴ ✄ and ✞ can be verified in Figure

2. If ✁ ✂ ✞ , the external minimization in the expression is

taken over two cases:

a) the left subtree has only one encoding. Then in this

case we have ✏ ✁ ✖ ✴ ✄ ✆ ✏ ✁✙✌ ✄✚✖ ✆ ✏ ✁✙✌ ✄✻✖ ✴ ✁✚✆ ✏ ✁✙✌ ✄✚✖ ,
since at the left side there is only one encoding, and at the

right side there is an OODT-II for ✁✛✌ ✄ encodings. Observe

now that all the encodings are one level deeper relatively to

the root.

b) the left subtree has more than one encoding. Let ✒
be the number of encodings of the left subtree (which is an

OODT), ✄✢✜ ✒✣✜ ✁✝✌ ✄ . The right subtree is an OODT-II

with ✁✤✌ ✒ encodings. All the encodings are one level deeper

relatively to the root. The least possible value for ✏ ✁ ✖ is

then given by the internal minimization: ✏ ✁ ✖ ✴✦✥✹✒ ✁ ✸✻✒ ✆ ✏ ✒✛✖ ✆✷✏ ✁✡✌ ✒✛✖ ✆ ✏ ✁✧✌ ✒✛✖ ✼ ✴ ✁★✆ ✥✹✒ ✁ ✸☞ ✏ ✒✛✖ ✆ ✏ ✁✡✌ ✒✛✖ ✼ ,
✄✩✜★✒✣✜ ✁✍✌ ✄ .

Thus, the external minimization of the expression results

from the minimization of itens a) and b).

We can make a dynamic programming algorithm based

on the above recurrence, since in order to obtain the op-

timal value for ✁ encodings one has to use only the opti-

mal values for lower number of encodings. The algorithm

fills three vectors: , ✪✬✫✧✙ ✺ and ✪✝✫✙✭✯✮ . In it is placed the

value of the Encoding External Path Length of the OODT;

in ✪✝✫✧✙ ✺ and ✪✝✫✙✭✯✮ , the minimum and maximum number

of encodings in the left subtree of an OODT.

Algorithm OODTCF

Input: ✁

 ✙✰ ✄✲✱✏✳ ✄ ; ✪✝✫✙✭✯✮✴✰ ✄✲✱✵✳ ✄ ; ✪✝✫✧✙ ✺ ✰ ✄✲✱✵✳ ✄ ;

For ✒ = 2 to ✁ do:✶ ✳✷ ✙✰ ✒ ✌ ✄✲✱ ; ✪✝✫✙✭✯✮✴✰ ✒✸✱✵✳ ✄ ; ✪✝✫✧✙ ✺ ✰ ✒✸✱✵✳ ✄ ;

For ✔ = 2 to ✠ ✒ ✡ ✞✌☞ do:
If ✙✰ ✔✹✱ ✆ ✙✰ ✁✍✌ ✔✹✱✺✜ ✶

Then ✶ ✳✷ ✙✰ ✔✹✱ ✆ ✙✰ ✁✍✌ ✔✹✱ ;✪✝✫✙✭✯✮✴✰ ✒✸✱✵✳ ✔ ; ✪✝✫✧✙ ✺ ✰ ✒✸✱✵✳ ✔ ;
Else If ✙✰ ✔✹✱ ✆ ✙✰ ✁✍✌ ✔✹✱ ✴ ✶

Then ✪✝✫✙✭✯✮✴✰ ✒✸✱✵✳ ✔
End-for ✙✰ ✒✸✱✏✳ ✒ ✆✟✶

Enf-for

It can be observed that, instead of a unique solution,

we have a range of possible numbers of encodings in the

left subtree of an OODT. That is the reason why ✪✍✫✧✙ ✺
and ✪✝✫✙✭✯✮ are used. ✪✝✫✙✭✯✮ indicates the largest solution

value which is less than or equal to ✠ ✁☛✡ ✞✌☞ . The algorithm

analyzes only half of the possible OODTs, not treating sym-

metrical solutions. Its complexity is clearly ✻ ✏ ✁ ✲ ✖ . In Table

2, built from an actual implementation of this algorithm, we

present the values of ✏ ✁ ✖ , ✪✬✫✧✙ ✺ ✏ ✁ ✖ and ✪✝✫✙✭✯✮ ✏ ✁ ✖ , for ✁
between 1 and 40.

✼ ✽ ✾❀✿❂❁ ❃ ✾ ✿❅❄✯❆ ✼ ✽ ✾❀✿❂❁ ❃ ✾ ✿❅❄✯❆
1 1 1 1 21 102 9 10

2 3 1 1 22 108 10 11

3 6 1 1 23 114 11 11

4 10 1 2 24 120 12 12

5 14 2 2 25 127 12 12

6 18 3 3 26 134 12 13

7 23 3 3 27 141 12 13

8 28 3 4 28 148 12 14

9 33 3 4 29 155 12 14

10 38 4 5 30 162 12 15

11 43 5 5 31 169 12 15

12 48 6 6 32 176 12 16

13 54 6 6 33 183 12 16

14 60 6 7 34 190 12 17

15 66 6 7 35 197 12 17

16 72 6 8 36 204 12 18

17 78 6 8 37 211 13 18

18 84 6 9 38 218 14 19

19 90 7 9 39 225 15 19

20 96 8 10 40 232 16 20

Table 2. OODTs parameters for equal frequen-

cies

One can highlight some facts related to Table 2:

1. The Equilibrated ODT seems to be always an OODT.

This fact is given by the columns for ✪✬✫✙✭✯✮ .
2. By using ✪✬✫✧✙ ✺ and ✪✝✫✙✭✯✮ , it is possible to build, re-

cursively, the OODT.

3. For a given ✁ , in most cases, there is more than one

possible OODT. This happens when the columns ✪✍✫✧✙ ✺
and ✪✝✫✙✭✯✮ are different. However, when ✁ is of the

form ✁ ✴ ✡✄☞ ✞
✳
, ✶ integer, there is only one OODT.

The first fact we will prove is that the Equilibrated ODT

is also an OODT, when the frequencies are equal. Let us

initially present an expression ✏ ✁ ✖ for the Encoding Ex-

ternal Path Length of Equilibrated ODTs and then give the

evidence that this expression is valid for any OODT with

the same number of encodings. From now on, ❇ ❈✔❉ ✁ will

allways refer to base 2.

48 : Cadernos do IME : Série Informática : Vol. 15 : Dezembro de 2003

Theorem 3 In an Equilibrated ODT with ✁ encodings,

equal frequencies:

 ✏ ✁ ✖ ✴
✁✄ ☎ ✄✂✁ if ✁ ✴ ✄
✡✄✁ if ✁ ✴ ✞✁ ☞ ✏ ✍✕❇ ❈✔❉ ✺

✎ ✆ ✡✑✖ ✌ ✡✄☞ ✞ ✁ ✂ ✄✆☎ ✖ ✝✟✞
✁ if ✁ ✂ ✞

Proof: For ✁ ✴ ✄✂✁✟✞ , the results are the same of Table 2. For✁ ✂ ✞ , the proof is by induction on ✁ . For ✁ ✴✬✡✄✁✡✠ and (,
the results are also the same of Table 2. We should analyze

the case where ✁ ✂ (.
Induction Hypothesis: The expression is correct for

✞✦✜ ✔ ✜ ✁ .

Induction Step: Applying the definition and the induc-

tion hypothesis we have:" ✏ ✁ ✖ ✴ ✁✬✆ " ✏ ✠ ✁☛✡ ✞✌☞❀✖ ✆ " ✏ ✍ ✁☛✡ ✞✌✎❀✖ ☞
Thus:" ✏ ✁ ✖ ✴ ✁✙✆ ✠ ✁☛✡ ✞✌☞

☛✌☞ ❇ ❈✔❉✎✍ ✺✟✏ ✲✡✑*✓✒ ✆ ✡✟✔ ✌ ✡✄☞ ✞ ✁ ✂ ✄✆☎✖✕ ✖✘✗✚✙✜✛✝✢✞ ✆
+ ✍ ✁☛✡ ✞✌✎

☛✌☞ ❇ ❈✔❉ ✁ ✺✟✏ ✲ ✞* ✒ ✆ ✡✟✔ ✌ ✡✄☞ ✞ ✁ ✂ ✄✆☎✖✣ ✖✘✗✚✙✜✤✝✢✞
We then have two cases:

a) ✁ is of the form ✁ ✴ ✡✄☞ ✞✦✥★✧ ✱ ✆ ✄ .

Then:

✍✕❇ ❈✔❉ ✺ * ✎ ✴✪✩ , ✍✕❇ ❈✔❉ ✁ ✺✟✏ ✲ ✞*
✎ ✴✪✩ ✌ ✄ , ✍✕❇ ❈✔❉ ✍ ✺✟✏ ✲✡✑*

✎ ✴✪✩ ✌ ✞ ,
✠ ✁☛✡ ✞✌☞ ✴ ✡✄☞ ✞✟✥★✧ ✲ .

Hence:" ✏ ✁ ✖ ✴ ✁❅✆ ✠ ✁☛✡ ✞✌☞ ✏ ✩ ✌ ✞ ✆ ✡✑✖ ✌ ✡✄☞ ✞✟✥★✧ ✲ ✆ ✍ ✁☛✡ ✞✌✎ ✏ ✩ ✌ ✄ ✆ ✡✑✖ ✌
✡✄☞ ✞✟✥★✧ ✱ ✴✁❂✆ ✏ ✠ ✁☛✡ ✞✌☞ ✆ ✍ ✁☛✡ ✞✌✎❀✖ ☞ ✏ ✩ ✌ ✄ ✆ ✡✑✖ ✌ ✡✠☞ ✞✟✥★✧ ✲ ✌ ✡✄☞ ✞✟✥★✧ ✲ ✌ ✡✄☞ ✞✟✥★✧ ✱ ✴✁ ✏ ✩ ✆ ✡✑✖ ✌ ✡✄☞ ✞✟✥ ✴ ✁ ✏ ✍✬✫✮✭✰✯ ✺ * ✎ ✆ ✡✑✖ ✌ ✡✄☞ ✞ ✁ ✱ ✲✴✳ ✖ ✝✟✞ . That is, the

result is still valid for ✁ .

b) ✁ is of the form ✁ ✴ ✡✄☞ ✞✦✥ , or ✁ ✴ ✡✄☞ ✞✟✥★✧ ✱ ✆✶✵ ✁
✄ ✜ ✵ ✜★✡✄☞ ✞✟✥★✧ ✱ .

Then:

✍✕❇ ❈✔❉ ✺ * ✎ ✴✪✩ , ✍✕❇ ❈✔❉ ✁ ✺✟✏ ✲ ✞*
✎ ✴ ✍✕❇ ❈✔❉ ✍ ✺✟✏ ✲✡✑*

✎ ✴✶✩ ✌ ✄ .

Hence:" ✏ ✁ ✖ ✴ ✁❅✆ ✠ ✁☛✡ ✞✌☞ ✏ ✩ ✌ ✄ ✆ ✡✑✖ ✌ ✡✄☞ ✞✟✥★✧ ✱ ✆ ✍ ✁☛✡ ✞✌✎ ✏ ✩ ✌ ✄ ✆ ✡✑✖ ✌
✡✄☞ ✞✟✥★✧ ✱ ✴✁ ✆ ✏ ✠ ✁☛✡ ✞✌☞ ✆ ✍ ✁☛✡ ✞✌✎❀✖ ✏ ✩ ✌ ✄ ✆ ✡✑✖ ✌ ✡✄☞ ✞✟✥★✧ ✱ ✌ ✡✄☞ ✞✟✥★✧ ✱ ✴✁✧✆ ✁ ✏ ✩ ✌ ✄ ✆ ✡✑✖ ✌ ✡✄☞ ✞✟✥★✧ ✱ ✌ ✡✄☞ ✞✟✥★✧ ✱ ✴ ✁ ✏ ✩ ✆ ✡✑✖ ✌ ✡✄☞ ✞✟✥ ✴✁ ✏ ✍✕❇ ❈✔❉ ✺ * ✎ ✆ ✡✑✖ ✌ ✡✄☞ ✞ ✁ ✂ ✄✆☎ ✖ ✝✟✞ . That is, the result is still valid

for ✁ .

In both cases, the result is still valid for ✁ , so the proof is

complete.

The next two theorems characterize completely an OODT

when the frequencies are equal. It is supposed that the num-

ber of encoding leaves in the left subtree is not greater than

the number of leaves in the right subtree. However, if that

number is greater than one, the symmetrical ODT is also an

OODT.

Theorem 4 Equilibrated ODTs are OODTs when the fre-

quencies are equal.

The proof of this theorem is done by induction on the

number ✁ of encodings, using the basic recurrence for an

OODT and the expression from Theorem 3. If we have e-

qual frequencies and suppose that both subtrees of an OODT

are Equilibrated ODTs with ✒ encodings in the left subtree,

then the function " ✏ ✁ ✖ ✴ ✁ ✆ " ✏ ✒✛✖ ✆ " ✏ ✁ ✌ ✒✛✖ is a non-

increasing function on ✒ in the interval [3, ✠ ✁☛✡ ✞✌☞]. Conse-

quently, the function has a minimum at ✠ ✁☛✡ ✞✌☞ . This implies

that the Equilibrated tree for ✁ encodings is an OODT, and

the induction is complete. So, the solution of the recurrence

of Theorem 2 is given by Theorem 3.

In order to characterize completely the OODTs with ✁
encodings where the frequencies are equal, let ✷✹✸ ✏ ✁ ✖ be

the number of encodings in the left subtree of an OODT.

Theorem 5 ✒ ✫✧✙ ✺ ✦✺✷✹✸ ✏ ✁ ✖ ✦ ✠ ✁☛✡ ✞✌☞ , where

✒ ✫✧✙ ✺ ✴✼✻ ✡✄☞ ✞ ✍ ✂ ✄✆☎ ✖ ✝ ✑ ✧ ✱ if ✁ ✦✾✽✄☞ ✞ ✍ ✂ ✄✆☎ ✖ ✝ ✑ ✧ ✱✁✍✌ ✡✄☞ ✞ ✍ ✂ ✄✆☎ ✖ ✝ ✑ otherwise

The proof of this theorem follows from the previous one.

The only point is to verify which is the smallest value of

✒ for which the function " ✏ ✁ ✖ ✴ ✁ ✆ " ✏ ✒✛✖ ✆ " ✏ ✁ ✌ ✒✛✖ is

constant in the interval [✒ , ✠ ✁☛✡ ✞✌☞]. This verification enables

us to determine the above values for ✒ ✫✧✙ ✺ . In Table 3 we

present the optimal configurations for OODTS having 1 to

30 encodings, as a consequence of Theorem 5. For each

value of number of encodings ✁ , it is shown the possible

number of encodings in the left and right subtrees, respec-

tively. The number of encodings in the left subtree is al-

ways considered as being not greater than the correspon-

ding number of encodings in the right subtree, although it is

possible to have the symmetrical configurations, in general.

✼ Opt Confi gs ✼ Opt Confi gs

1 1/0 16 6/10 7/9 8/8

2 1/1 17 6/11 7/10 8/9

3 1/2 18 6/12 7/11 8/10 9/9

4 1/3 2/2 19 7/12 8/11 9/10

5 2/3 20 8/12 9/11 10/10

6 3/3 21 9/12 10/11

7 3/4 22 10/12 11/11

8 3/5 4/4 23 11/12

9 3/6 4/5 24 12/12

10 4/6 5/5 25 12/13

11 5/6 26 12/14 13/13

12 6/6 27 12/15 13/14

13 6/7 28 12/16 13/15 14/14

14 6/8 7/7 29 12/17 13/16 14/15

15 6/9 7/8 30 12/18 13/17 14/16 15/15

Table 3. Optimal Configurations for OODT

with equal frequencies

In the above table, observe that when ✁ is of the form✁ ✴ ✡✄☞ ✞✟✥ , ✁ ✴ ✡✄☞ ✞✟✥ ✆ ✄ , or ✁ ✴ ✡✄☞ ✞✟✥ ✌ ✄ , there is only

Cadernos do IME : Série Informática : Vol. 15 : Dezembro de 2003 : 49

one optimal configuration. For ✁ = 1, 2, and 3, we also have

only one configuration.

Let us now characterize the minimum and maximum

depths of OODTs with ✁ encodings and equal frequencies.

It is rather intuitive that the OODTs with minimum and

maximum depths can be obtained from the following ideas:

1. OODTs with minimum depth can be recursively

constructed by using left subtrees with maximum num-

ber of encodings, provided that this number is not

greater than the number of encodings in the right sub-

tree. As it was defined before, these are Equilibrated

ODTs.

2. OODTs with maximum depth can also be recursive-

ly constructed by using left subtrees with minimum

number of encodings.

Let ✡✫✧✙ ✺ ✏ ✁ ✖ be the minimum depth of an OODT with ✁
encodings and equal frequencies, ✝✫✙✭✯✮ ✏ ✁ ✖ the maximum

depth, and ✁ ✫✧✙ ✺ the minimum number of encodings in the

left subtree. We have the following recurrences:

 ✡✫✧✙ ✺ ✴✼✻ ✄✂✁ if ✁ ✴ ✄
✄ ✆ ✡✫✧✙ ✺ ✏ ✠ ✁☛✡ ✞✌☞❀✖ ✁ if ✁ ✂ ✄

 ✡✫✙✭✯✮✮✴✼✻ ✄✂✁ if ✁ ✴ ✄
✄ ✆ ✡✫✙✭✯✮ ✏ ✁ ✌ ✁ ✫✧✙ ✺ ✖ ✁ if ✁ ✂ ✄

Table 4 was built from the above recurrences and data

from Table 2, for number of encodings ✁ varying from 1

to 60. Now we present the solution of the recurrences for

 ✡✫✧✙ ✺ and ✡✫✙✭✯✮ .
Theorem 6

 ✡✫✧✙ ✺ ✴✼✻ ✄✂✁ if ✁ ✴ ✄ ,
✍✕❇ ❈✔❉ ✁ ✎ ✆ ✄✂✁ if ✁ ✂ ✄

Proof: The proof is by induction on ✁ . Using the recur-

rence, we have ✧✫✧✙ ✺ ✏ ✄✚✖ ✴ ✄ , ✡✫✧✙ ✺ ✏ ✞✂✖ ✴ ✞ , ✡✫✧✙ ✺ ✏ ✡✑✖ ✴ ✡ .
These results agree with the previous ones.

InductionHypothesis. For ✄ ✜ ✒ ✜ ✁ , we have ✝✫✧✙ ✺ ✏ ✒✛✖ ✴
✍✕❇ ❈✔❉ ✒ ✎ ✆ ✄ .

Induction Step. Using the definition and the induction

hypothesis, ✧✫✧✙ ✺ ✏ ✁ ✖ ✴ ✄ ✆ ✡✫✧✙ ✺ ✏ ✍ ✁☛✡ ✞✌✎❀✖ ✴ ✄ ✆ ✍✕❇ ❈✔❉ ✺ ✲ ✎ ✆
✄ , because the tree with minimum depth should also have

as right subtree a tree with minimum depth and the value

✍ ✁☛✡ ✞✌✎ is the smallest possible number of encodings in that

subtree. We have two cases:

a) ✁ is even, ✁ ✴ ✞✂✶ , ✶ ✂ ✄ . Hence:

 ✡✫✧✙ ✺ ✏ ✁ ✖ ✴ ✍✕❇ ❈✔❉ ✲✟✳✲ ✎ ✆ ✞✯✴ ✍✕❇ ❈✔❉ ✶ ✎ ✆ ✞✯✴ ✍✕❇ ❈✔❉ ✞✂✶ ✎ ✆ ✄ ✴
✍✕❇ ❈✔❉ ✁ ✎ ✆ ✄ .

b) ✁ is odd, ✁ ✴ ✞✂✶ ✆ ✄ , ✶ ✂ ✄ . Hence:

✼ ✁ ✿❂❁ ❃ ✁ ✿❅❄✯❆ ✼ ✁ ✿❂❁ ❃ ✁ ✿❅❄✯❆
1 1 1 31 6 7

2 2 2 32 6 7

3 3 3 33 6 7

4 3 4 34 6 7

5 4 4 35 7 7

6 4 4 36 7 7

7 4 5 37 7 7

8 4 5 38 7 7

9 5 5 39 7 7

10 5 5 40 7 7

11 5 5 41 7 7

12 5 5 42 7 7

13 5 6 43 7 7

14 5 6 44 7 7

15 5 6 45 7 7

16 5 6 46 7 7

17 6 6 47 7 7

18 6 6 48 7 7

19 6 6 49 7 8

20 6 6 50 7 8

21 6 6 51 7 8

22 6 6 52 7 8

23 6 6 53 7 8

24 6 6 54 7 8

25 6 7 55 7 8

26 6 7 56 7 8

27 6 7 57 7 8

28 6 7 58 7 8

29 6 7 59 7 8

30 6 7 60 7 8

Table 4. Minimum and maximum depths of

OODTs with equal frequencies

 ✡✫✧✙ ✺ ✏ ✁ ✖ ✴ ✍✕❇ ❈✔❉ ✲✟✳✄✂ ✱✲ ✎ ✆ ✞ ✴
✍✕❇ ❈✔❉ ✲✟✳✄✂ ✲✲ ✎ ✆ ✞✮✴ ✍✕❇ ❈✔❉ ✏ ✶ ✆ ✄✚✖ ✎ ✆ ✞✮✴

✍✕❇ ❈✔❉ ✞ ✏ ✶ ✆ ✄✚✖ ✎ ✆ ✄ ✴ ✍✕❇ ❈✔❉ ✏ ✞✂✶ ✆ ✄✚✖ ✎ ✆ ✄ ✴ ✍✕❇ ❈✔❉ ✁ ✎ ✆ ✄ .

In both cases, the result is also valid for ✁ , so the proof

is complete.

One initial comparison between the last result and that

one for the Huffman tree, whose depth ✆☎✝✫✧✙ ✺ is given by

 ✆☎✡✫✧✙ ✺ ✴ ✍✕❇ ❈✔❉ ✁ ✎ , shows that the difference of one unit

seems to indicate the need of one extra bit, in the case of

OODTs, due to the parity restriction.

Theorem 7

 ✡✫✙✭✯✮✮✴✼✻ ✄✂✁ if ✁ ✴ ✄
✍✕❇ ❈✔❉ ✺ " ✎ ✆ ✡✄✁ if ✁ ✂ ✄

Proof: The proof is by induction on ✁ . Using the recur-

rence, we have ✧✫✙✭✯✮ ✏ ✄✚✖ ✴ ✄ , ✡✫✙✭✯✮ ✏ ✞✂✖ ✴ ✞ , ✡✫✙✭✯✮ ✏ ✡✑✖ ✴
✡ , ✡✫✙✭✯✮ ✏ ✠✗✖ ✴ ✠ , ✡✫✙✭✯✮ ✏ 8✂✖ ✴ ✠ . These results agree with

the previous ones.

InductionHypothesis. For 8★✜✷✒ ✜ ✁ we have ✧✫✙✭✯✮ ✏ ✒✛✖ ✴
✍✕❇ ❈✔❉ ✙" ✎ ✆ ✡ .

50 : Cadernos do IME : Série Informática : Vol. 15 : Dezembro de 2003

Induction Step. We have that ✧✫✙✭✯✮ ✏ ✁ ✖ ✴
✄ ✆ ✡✫✙✭✯✮ ✏ ✁✟✌ ✁ ✫✧✙ ✺ ✖ , where ✁✟✌ ✁ ✫✧✙ ✺ , given by Theo-

rem 5, is the maximum possible number of encodings in

the right subtree. Consequently, the resulting depth is the

largest possible. We should analyze three possibilities, ac-

cording to Theorem 5:

a) ✁ is of the form ✁ ✴ ✡✄☞ ✞✦✥✬✦ ✽✄☞ ✞ ✍ ✂ ✄✆☎ ✖ ✝ ✑ ✧ ✱ , ✩ ✴
✠✕❇ ❈✔❉ ✺ , ☞ .

Then ✁ ✫✧✙ ✺ is given by ✁ ✫✧✙ ✺ ✴ ✡✄☞ ✞ ✍ ✂ ✄✆☎ ✖ ✝ ✑ ✧ ✱ . There-

fore, ✁✣✌ ✁ ✫✧✙ ✺ ✴ ✁ ✫✧✙ ✺ ✴ ✡✄☞ ✞✟✥★✧ ✱ , and ✡✫✙✭✯✮ ✏ ✁ ✖ ✴ ✄ ✆
✍✕❇ ❈✔❉

$

✲ ✁ ✗✘✎$

✎ ✆ ✡ ✴ ✍✕❇ ❈✔❉ ✞✟✥★✧ ✱ ✎ ✆ ✠ ✴✶✩ ✌ ✄ ✆ ✠ ✴✪✩ ✆ ✡✮✴
✍✕❇ ❈✔❉ ✺ $ ✎ ✆ ✡ , due to the form of ✁ .

b) ✁ is of the form ✁ ✴ ✡✄☞ ✞✦✥★✧ ✱ ✆✾✵ ✦ ✽✄☞ ✞ ✍ ✂ ✄✆☎ ✖ ✝ ✑ ✧ ✱ ,
✄ ✜ ✵ ✦ ✡✄☞ ✞✟✥★✧ ✲

Then ✁ ✫✧✙ ✺ is given by ✁ ✫✧✙ ✺ ✴ ✡✄☞ ✞ ✍ ✂ ✄✆☎ ✖ ✝ ✑ ✧ ✱ ✴✫✡✄☞ ✞✟✥★✧ ✲ .
Therefore, ✁★✌ ✁ ✫✧✙ ✺ ✴ ✡✄☞ ✞✟✥★✧ ✱ ✆ ✵ ✌ ✡✄☞ ✞✟✥★✧ ✲ ✴ ✡✄☞ ✞✟✥★✧ ✲ ✆ ✵ ,

and ✡✫✙✭✯✮ ✏ ✁ ✖ ✴ ✄ ✆ ✍✕❇ ❈✔❉
$

✲ ✁ ✗✟✙ ✂ ✂$

✎ ✆ ✡ =
✍✕❇ ❈✔❉ ✏ ✞✟✥★✧ ✲ ✆ ✂ $ ✖ ✎ ✆ ✠ ✴ ✩ ✌ ✞ ✆ ✄ ✆ ✠ ✴ ✩ ✆ ✡ , due to

the forms of ✁ and ✵ . Since ✍✕❇ ❈✔❉ ✺ $ ✎✮✴ ✩ , then ✡✫✙✭✯✮ ✏ ✁ ✖ ✴
✍✕❇ ❈✔❉ ✺ $ ✎ ✆ ✡ .

c) ✁ is of the form ✁ ✴ ✡✄☞ ✞✦✥★✧ ✱ ✆✺✵ ✂ ✽✄☞ ✞ ✍ ✂ ✄✆☎ ✖ ✝ ✑ ✧ ✱ ,
✡✄☞ ✞✟✥★✧ ✲ ✜ ✵ ✜ ✡✄☞ ✞✟✥★✧ ✱ .

Then ✁ ✫✧✙ ✺ is given by ✁ ✫✧✙ ✺ ✴ ✁ ✌ ✡✄☞ ✞ ✍ ✂ ✄✆☎ ✖ ✝ ✑ . Therefore,
✁ ✌ ✁ ✫✧✙ ✺ ✴ ✡✄☞ ✞ ✍ ✂ ✄✆☎ ✖ ✝ ✑ , and ✡✫✙✭✯✮ ✏ ✁ ✖ ✴ ✄ ✆ ✍✕❇ ❈✔❉

$

✲ ✕ ✄ ☎✝✆ ✖ ✝ ✛$

✎ ✆
✡ ✴ ✍✕❇ ❈✔❉ ✞ ✍ ✂ ✄✆☎ ✖ ✝ ✑ ✎ ✆ ✠ ✴ ✠✕❇ ❈✔❉ ✺ $ ☞ ✆ ✠ . In this case, accord-

ing to Theorem 5, ✁ is not of the form ✁ ✴ ✡✄☞ ✞✦✥ . Hence,

✠✕❇ ❈✔❉ ✺ $ ☞ ✴ ✍✕❇ ❈✔❉ ✺ $ ✎ ✌ ✄ and ✡✫✙✭✯✮ ✏ ✁ ✖ ✴ ✍✕❇ ❈✔❉ ✺ $ ✎ ✆ ✡ .
In all cases, the result is still valid for ✁ , so the induction

is complete.

We can compare, in a deeper way, OODTs with Huffman

trees, when we have equal frequencies. We know that, in

this case, Huffman trees are complete strictly binary trees.

In this tree, the Encoding External Path Length is also the

External Path Length (EPL = EEPL). If we have ✁
encodings, then ✷✮✘ ✸✪✴ ✁ ✏ ✍✕❇ ❈✔❉ ✁ ✎ ✆ ✄✚✖ ✌ ✞ ✁ ✂ ✄✆☎ ✺ ✞ [7].

In Table 6 we present data comparing OODTs with Huff-

man trees. We show the EEPL for OODTs ✏✟✞ ✖ , the average

length of encodings in this tree ✏✟✞ ✡✌✁ ✖ , the EEPL for the

Huffman tree ✏✝✠ ✖ , the average length of encodings in this

tree ✏✝✠ ✡✌✁ ✖ , and the difference between these two average

lenghts. This parameter can be interpreted as the additional

cost to endow Huffman trees with error detection.

We observe from Table 5 that the additional cost to en-

dow Huffman trees with error detection is always less than

one, which is an intuitive upper limit, as commented before.

But this limit seems to be tighter, once the difference, shown

in the last column, is always in the

interval [0.33 , 0.5]. Next, we will prove that this is in-

deed the theorethic interval where this difference lies in.

✼ ✡ ✡☞☛ ✼ ✌ ✌✍☛ ✼ Difference

10 38 3,8 34 3,4 0,4

24 120 5 112 4,67 0,33

32 176 5,5 160 5 0,5

48 288 6 272 5,67 0,33

64 416 6,5 384 6 0,5

100 708 7,08 672 6,72 0,36

192 1536 8 1472 7,67 0,33

500 4732 9,46 4488 8,98 0,48

1000 10464 10,46 9976 9,98 0,48

5000 63856 12,77 61808 12,36 0,41

10000 137712 13,77 133616 13,36 0,41

Table 5. ComparisonbetweenOODT andHuff-

man trees for equal frequencies

Theorem 8 The difference between the average encoding

lengths of an OODT and a Huffman tree, with ✁ ✂ ✄ enco-

dings and equal frequencies, lies in the interval ✰ ✄ ✡ ✡✄✁ ✄ ✡ ✞ ✱ .
It is minimumwhen ✁ is of the form ✁ ✴ ✡✄☞ ✞

✳
, andmaximum

when ✁ is of the form ✁ ✴ ✞
✳
.

Proof: We have four cases:

a) ✁ is of the form ✁ ✴ ✞
✳
, ✶ ✂ ✄ . Then ✍✕❇ ❈✔❉ ✁ ✎ ✴ ✶

and ✍✕❇ ❈✔❉ ✺ $ ✎ ✴ ✍✕❇ ❈✔❉ ✏✓✏ ✞ ✳ ✧ ✲ ✖ ✏✏✎ $ ✖✓✖ ✎ ✴ ✍ ✏ ✶ ✌ ✞✂✖ ✆ ❇ ❈✔❉ ✎ $ ✎ ✴
✶ ✌ ✞ ✆ ✄ ✴ ✶ ✌ ✄ . The difference between the average

encoding lenghts is:

✰ ✴
✁ ✏ ✍✕❇ ❈✔❉ ✺ $ ✎ ✆ ✡✑✖ ✌ ✡✄☞ ✞ ✁ ✂ ✄✆☎ ✖ ✝✟✞

✁

✌ ✏ ✁ ✏ ✍✕❇ ❈✔❉ ✁ ✎ ✆ ✄✚✖ ✌ ✞ ✁ ✂ ✄✆☎ ✺ ✞ ✖
✁

By simplifying this expression, we obtain:

✰ ✴ ✞
✳ ✏ ✶ ✌ ✄ ✆ ✡✑✖ ✌ ✡✄☞ ✞ ✳ ✧ ✱ ✌ ✏ ✞ ✳ ✏ ✶ ✆ ✄✚✖ ✌ ✞ ✳ ✖

✞
✳ ✴ ✄ ✡ ✞

Notice that this result is also valid for ✁ ✴ ✞ .
b) ✁ is of the form ✁ ✴ ✡✄☞ ✞

✳
, ✶✒✑ ☎ . Then ✍✕❇ ❈✔❉ ✁ ✎ ✴

✍ ✶ ✆ ❇ ❈✔❉ ✡ ✎ ✴ ✏ ✶ ✆ ✞✂✖ and ✍✕❇ ❈✔❉ ✺ $ ✎ ✴ ✍✕❇ ❈✔❉ ✞ ✳ ✎ ✴ ✶ . The

difference between the average encoding lengths is:

✰ ✴
✁ ✏ ✍✕❇ ❈✔❉ ✺ $ ✎ ✆ ✡✑✖ ✌ ✡✄☞ ✞ ✁ ✂ ✄✆☎ ✖ ✝✟✞

✁

✌ ✁ ✏ ✍✕❇ ❈✔❉ ✁ ✎ ✆ ✄✚✖ ✌ ✞ ✁ ✂ ✄✆☎ ✺ ✞
✁

Again, by simplifying this expression, we obtain:

✰ ✴ ✡✄☞ ✞
✳
✶ ✆ ✽✄☞ ✞ ✳ ✌ ✡✄☞ ✞ ✳ ✌ ✡✄☞ ✞ ✳ ✶ ✌ ✽✄☞ ✞ ✳ ✆ ✞ ✳✄✂ ✲

✡✄☞ ✞
✳ ✴ ✄ ✡ ✡

Cadernos do IME : Série Informática : Vol. 15 : Dezembro de 2003 : 51

c) ✁ is of the form ✁ ✴★✞
✳ ✆ ✵ , ✄ ✜ ✵ ✜ ✞ ✳ . Then

✍✕❇ ❈✔❉ ✁ ✎ ✴ ✶ ✆ ✄ and ✍✕❇ ❈✔❉ ✺ ! ✎ may be equal to ✶ ✌ ✄ or ✶ .

We have two subcases:

c.1) If ✍✕❇ ❈✔❉ ✺ ✎ ✴ ✶ ✌ ✄ , we have:

✰ ✴
✁ ✏ ✍✕❇ ❈✔❉ ✺ ✎ ✆ ✡✑✖ ✌ ✡✄☞ ✞ ✁ ✂ ✄✆☎ ✖ ✝ ✞

✁

✌ ✁ ✏ ✍✕❇ ❈✔❉ ✁ ✎ ✆ ✄✚✖ ✌ ✞ ✁ ✂ ✄✆☎ ✺ ✞
✁

By simplifying and using the fact that ✵ ✂ ✄ , we have:

✰ ✴
✁ ✏ ✶ ✌ ✄ ✆ ✡✑✖ ✌ ✡✄☞ ✞ ✳ ✧ ✱ ✌ ✁ ✏ ✶ ✆ ✄ ✆ ✄✚✖ ✆ ✞ ✳✄✂ ✱

✁ ✜ ✄ ✡ ✞
c.2) If ✍✕❇ ❈✔❉ ✺ ✎ ✴ ✶ , we have:

✰ ✴
✁ ✏ ✍✕❇ ❈✔❉ ✺ ✎ ✆ ✡✑✖ ✌ ✡✄☞ ✞ ✁ ✂ ✄✆☎ ✖ ✝ ✞

✁

✌ ✁ ✏ ✍✕❇ ❈✔❉ ✁ ✎ ✆ ✄✚✖ ✌ ✞ ✁ ✂ ✄✆☎ ✺ ✞
✁

By simplifying and using the fact that, in this case,✵ ✜ ✞
✳
, we have:

✰ ✴
✁ ✏ ✶ ✆ ✡✑✖ ✌ ✡✄☞ ✞ ✳ ✌ ✁ ✏ ✶ ✆ ✄ ✆ ✄✚✖ ✆ ✞ ✳✄✂ ✱

✁ ✜ ✄ ✡ ✞
Thus, in the two subcases above, the maximum

difference is ✄ ✡ ✞ .
d) ✁ is of the form ✁ ✴ ✡✄☞ ✞

✳ ✆ ✵ , ✄✝✜ ✵ ✜✬✡✄☞ ✞
✳
. Then

✍✕❇ ❈✔❉ ✁ ✎ may be ✶ ✆ ✞ or ✶ ✆ ✡ , and ✍✕❇ ❈✔❉ ✺ ✎✵✴ ✶ ✆ ✄ . We

have two additional subcases:

d.1) If ✍✕❇ ❈✔❉ ✁ ✎ ✴ ✶ ✆ ✞ , we have:

✰ ✴
✁ ✏ ✍✕❇ ❈✔❉ ✺ ✎ ✆ ✡✑✖ ✌ ✡✄☞ ✞ ✁ ✂ ✄✆☎ ✖ ✝ ✞

✁

✌ ✁ ✏ ✍✕❇ ❈✔❉ ✁ ✎ ✆ ✄✚✖ ✌ ✞ ✁ ✂ ✄✆☎ ✺ ✞
✁

Thus, since ✵ ✂ ✄ :

✰ ✴
✁ ✏ ✶ ✆ ✄ ✆ ✡✑✖ ✌ ✡✄☞ ✞ ✳✄✂ ✱ ✌ ✁ ✏ ✶ ✆ ✞ ✆ ✄✚✖ ✆ ✞ ✳✄✂ ✲

✁ ✂ ✄ ✡ ✡
d.2) If ✍✕❇ ❈✔❉ ✁ ✎ ✴ ✶ ✆ ✡ , we have:

✰ ✴
✁ ✏ ✍✕❇ ❈✔❉ ✺ ✎ ✆ ✡✑✖ ✌ ✡✄☞ ✞ ✁ ✂ ✄✆☎ ✖ ✝ ✞

✁

✌ ✁ ✏ ✍✕❇ ❈✔❉ ✁ ✎ ✆ ✄✚✖ ✌ ✞ ✁ ✂ ✄✆☎ ✺ ✞
✁

By using the fact that ✵ ✜✷✡✄☞ ✞
✳
:

✰ ✴
✁ ✏ ✶ ✆ ✄ ✆ ✡✑✖ ✌ ✡✄☞ ✞ ✳✄✂ ✱ ✌ ✁ ✏ ✶ ✆ ✡ ✆ ✄✚✖ ✆ ✞ ✳✄✂

✁ ✂ ✄ ✡ ✡

Thus, in the two subcases above, the maximum differ-

ence is ✄ ✡ ✡ . The proof is complete.

Theorem 8 shows that, when the frequencies are equal,

we have a better result than that suggested by intuition, be-

cause the difference between the average encoding lengths

of the OODT and the Huffman tree has ✄ ✡ ✞ as an upper

limit, which is a negligible difference for large values for✁ . Therefore, the cost paid to add the functionality of error

detection to Huffman Trees is low.

4 OODT for general frequencies

For the general case for OODTs, where the frequencies

may be different, we will sketch an algorithm which is built

from the next lemma, easily demonstrable.

Lemma 9 Let ✢✙ , ☛✜ be two encoding leaves in an OODT

with access frequencies ✾ ✙ , ✾ ✜ and depths ✰ ✙ , ✰ ✜ , respective-
ly. If ✾ ✙ ✑ ✾ ✜ then ✰ ✙ ✦ ✰ ✜ .

This principle is also valid for Huffman trees. It derives

a Dynamic Programming algorithm, which is based in the

search for the best place for the leaf with greater frequency.

A secondary principle that helps is the fact that the place-

ment of the leaf with greater frequency defines a induced

forest, starting in that level, where the remaining ✁✢✌ ✄
leaves belong to, and this forest is also an optimal one. This

kind of algorithm is generally ✻ ✏ ✁

✖ , but the challenge is to

find a greedy solution, as we have for Huffman trees.

References

[1] R. Baeza And Y. Netto. Modern Information Re-

trieval. Addison Wesley, 1999.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C.

Stein. Introduction to Algorithms. MIT Press, 2nd edi-

tion, 2001.

[3] M. J. Golin, C.Kenyon And N. E. Young. Huffman

Coding with Unequal Letter Costs . Proceedings of the

34th Annual ACM Symposium on Theory of Comput-

ing. (2002) 785-791.

[4] R. W. Hamming.Coding And Information Theory.

Prentice Hall, 1980.

[5] D. A. Huffman. A Method for the Construction of

Minimum RedundancyCodes. Proceedings of the IRE,

40:1098-1101, 1951.

[6] J. L. Szwarcfiter And L. Markenzon. Estruturas de

Dados e Seus Algoritmos. LTC Editora, 1994.

[7] D. E. Knuth. The Art of Computer Programming. Ad-

dison Wesley, 1973.

52 : Cadernos do IME : Série Informática : Vol. 15 : Dezembro de 2003

