RASO: an Ontology of Requirements-based Adaptive Systems

Cassio Capucho Pecanha, Bruno Borlini Duarte, Ricardo de Almeida Falbo,
Vitor E. Silva Souza

Ontology & Conceptual Modeling Research Group (NEMO)
Department of Computer Science
Federal University of Espirito Santo (UFES) — Vitéria, ES, Brazil

cassiocpecanha@gmail.com, bruno.b.duarte@ufes.br
{falbo,vitorsouza}@inf.ufes.br

Abstract. There is growing interest in software that can adapt their behavior to
deal with deviations between their outcome and their requirements at runtime.
A systematic mapping of the literature on self-adaptation approaches based on
requirements models revealed over 200 papers on this subject. However, there is
still a lack of a formal and explicit representation of the concepts in this domain,
which can lead to problems in communication, learning, problem-solving and
interoperability. To make a clear and precise description of this domain, this pa-
per proposes RASO: the Requirements-based Adaptive Systems Ontology. RASO
was built using a well-established Ontology Engineering method, is grounded
on a foundational ontology and reuses concepts from other software-related on-
tologies. The ontology was evaluated by mapping constructs from the most re-
ferenced approaches from the literature to its concepts, thus creating a path for
interoperability among them.

1. Introduction

For the past decades, there is growing interest in self-adaptation — systems that are able
to modify their behavior/structure in response to the environment, itself and its goals — as
a way to manage the ever increasing complexity and the many other challenges involved
in the development and management of current software systems [de Lemos et al., 2013].
Some academic efforts in this direction (e.g., [Baresi et al., 2010; Whittle et al., 2010;
Dalpiaz et al., 2012; Souza et al., 2011]) focus on Requirements Engineering (RE) for
Adaptive Systems, attempting to address what adaptations are possible and how they can
be realized [Cheng et al., 2009a]. A systematic mapping of the literature on requirements-
based self-adaptation approaches revealed over 200 publications on this subject.

Each of these proposals may use different kinds of models and terms to repre-
sent what are the system requirements and prescribe how it should self-adapt in given
situations. As a result, the vocabulary used by these methods may be very similar, but
the semantics of the entities present in their models are not always the same, thus re-
sulting in problems such as concept overloading: the same name being used to identify
things that are ontologically different, i.e., that have different natures and identities in
the real world. Other problems, such as construct excess, construct redundancy and in-
completeness [Guizzardi et al., 2008] may lead to difficulties in communication, learning,
problem-solving and interoperability, especially among requirements engineers and other
actors involved in the development of adaptive systems.

58: Cadernos do IME: Série Informatica: Vol. 41: Dezembro 2018

An ontology as an artifact, i.e., a “formal specification of a shared conceptualiza-
tion” [Borst, 1997], can help mitigate these problems and has been attracting interest in
the RE community [Dermeval et al., 2016]. In particular, a domain reference ontology is a
conceptual model developed with the goal of making a clear and precise description of do-
main entities, representing the consensus within a community. It is a solution-independent
specification and, thus, does not maximize computational properties at the cost of truth-
fulness to the domain [Guizzardi, 2007].

In a previous work, Duarte et al. [2018] proposed a domain reference ontology on
the use of Requirements at Runtime (RRT), a subject that is at the core of RE for Adaptive
Systems [Cheng et al., 2009a]. Hence, we set out to extend this ontology towards the
domain of requirements-based adaptive systems, with the purpose of establishing a clear
and precise description of this domain.

In this paper, we present the Requirements-based Adaptive Systems Ontology
(RASO). RASO was built using a well-established Ontology Engineering method, is
grounded on a foundational ontology and reuses concepts from other software-related
ontologies. RASO focuses on what an Adaptive System is, its distinguished compo-
nents and their relationship with requirements of different nature. To establish consensus
about the domain, we performed a systematic mapping of the literature on requirements-
based approaches for the development of adaptive systems and used selected publications
as sources for capturing the ontology’s concepts. Finally, the ontology was evaluated
by verifying if it satisfied its requirements, expressed as competency questions, and by
validating whether its concepts are able to represent real-world entities extracted from
well-known approaches in this domain.

This paper is an extended version of [Pecanha et al., 2018] and is structured as
follows: Section 2 reports on the systematic mapping of the literature and briefly summa-
rizes our domain of discourse; Section 3 describes the ontological foundations (method
and reused ontologies) of RASO; Section 4 presents RASO itself (its requirements and
conceptual model); Section 5 explains how RASO was evaluated; Section 6 compares our
work to similar proposals in the field; and, finally, Section 7 concludes this paper.

2. Requirements-based Approaches for Adaptive Systems

With the expansion of information, software systems have to deal with issues such as
integration of new technologies and continuous evolution, motivating the need for new
approaches that support change. This calls for systems that are more flexible, versatile,
resilient, recoverable, and self-optimizing, systems which adapt to changing operational
contexts, environments or shortcomings in their own operation. Thus, self-adaptation has
become an important research topic [Cheng et al., 2009a; de Lemos et al., 2013].

The element that makes self-adaptability possible is usually software. Since adap-
tation is associated with a specific context, it applies in several application areas and
technologies, such as: user interfaces, embedded systems, mobile and autonomous robots
and multi-agent systems. However, adequate adaptation is still a challenge and little en-
deavor has been made to create appropriate software engineering approaches to provide
self-adaptation functionality [Cheng et al., 2009a].

When developing self-adaptive systems, engineers should take into account the
domain logic and the adaptation logic. Requirements engineering is the first stage in the

59: Cadernos do IME: Série Informatica: Vol. 41: Dezembro 2018

Tabela 1. Terms used in the search string.

Id Group of terms

“requirements model” OR “requirements engineering” OR “requirements

p | analysis” OR “requirements reasoning” OR “goal model” OR “gore” OR “goal
analysis” OR “goal reasoning”

“adaptive system” OR “adaptive systems” OR “self-tuning” OR “runtime
adaptation” OR “self-adaptive” OR “self-adaptation” OR “self-optimization”
OR “self-adaptivity” OR “software adaptation” OR “self-configuration” OR

“self-healing” OR “‘self-protection”

life-cycle of software development and, different from traditional RE, RE for adaptive
systems focuses more on defining adaptation logic and addresses what changes in the
environment and the system themselves to be monitored, what to adapt, when to adapt
and how to adapt [Yang et al., 2014].

In order to elicit and understand the concepts involved in approaches that use re-
quirements models for the development of adaptive systems, we conducted a systematic
mapping of the literature [Kitchenham and Charters, 2007; Petersen et al., 2015] and
analyzed the state-of-the-art in this particular field. The main goal was to identify the
concepts used in requirements models by different approaches with the purpose of de-
veloping the Requirements-based Adaptive Systems Ontology (RASO). In this section,
we briefly describe the protocol and results of this systematic mapping, but a complete
description is available in https://goo.gl/66ve9e.

In a previous work, Duarte et al. [2018] performed a systematic mapping study
with the purpose of developing the Runtime Requirements Ontology (RRO, cf. Section 3),
thus with a broader scope (any use of requirements models at runtime). Such mapping
classified publications by purpose of use of requirements at runtime, separating them in
two major categories: Monitor Requirements, which propose checking if requirements
defined at design time are being achieved at runtime, and Change Requirements, in which
requirements are used not only as guidelines to monitoring but also as rules on how the
system should adapt to keep satisfying its requirements.

We based our mapping protocol on these previous results by considering the publi-
cations in the Change Requirements category as control papers, i.e., publications that our
search string should return. We also considered the same set of publication sources: ACM
Digital Library, Engineering Village, IEEE Xplore, Science Direct and Scopus. Based on
the requirements for RASO, research questions were defined for the systematic mapping
and the search string was thus elaborated in an iterative process, by testing it in these
sources and checking if all control papers returned, otherwise refining it with key terms
present in the meta-data (title, abstract, keywords) of the missing control articles. The
final string is the conjunction of the two groups of terms shown in Table 1, i.e., p A a.

Once we had a satisfactory search string, we proceeded with the systematic
mapping, i.e., collected search results, merged duplicate entries and applied inclu-
sion/exclusion criteria. Figure 1 provides an overview of this process: a total of 784
entries returned from the different publication sources, resulting in 385 articles after du-
plicates (same paper returning in different sources) were eliminated. We then excluded

60: Cadernos do IME: Série Informatica: Vol. 41: Dezembro 2018

Publications selected from the
~ @ ™, sources
/ s (784) 3)
S — \ / Rank the publications by their
— f—— S popularity in Google Scholar
IEEE Science | .| \ (&3 v _ (10) oogiey |
[| Xplore Direct | [“ynage | | &) - ————— 7 Scholar_}
(111) (21) (287) Duplication Remaoval
| o — L T | (385) v
I| { - -_-"e e ._. Ty |I G ™
e k= Publications selected from
—— T theprevious results
iy Scopus /64 v N ? 82 —— ‘
| @ | | (325)] / {pplicatinn of selection criteria: —{ TS4 }
= —_— title, abstract and keywords |~ _Results _
. (224)

Figura 1. Overview of the systematic mapping protocol for RASO.

161 publications that either (1) did not provide an abstract; (2) provided only an exten-
ded abstract; (3) was not written in English; (4) was an older copy or version of another
selected publication; (5) was a secondary study, a tertiary study, a summary, a tutorial or
an editorial; or (6) whose complete version (PDF file) was unavailable. Finally, we con-
sidered as inclusion criterion if the paper presented any kind of requirements model for
adaptive systems, which excluded other 57 papers. Selection criteria were applied in two
phases — first considering only meta-data (title, abstract and keywords), then reading the
full paper — resulting in 224 selected publications.

Due to the large number of selected publications, we proposed a new filter in or-
der to select a smaller set publications which would be studied as part of requirements
elicitation and ontology capture for RASO. Given that an ontology should provide a con-
ceptualization that is shared by a certain community, we ranked the publications by their
popularity (citations), as follows: (1) the total number of citations was extracted from
Google Scholar by searching for the publication title; (2) the age of each publication was
calculated by subtracting the publication year from the current year; (3) the number of
citations was divided by the age, normalizing to citations per year; (4) the publications
were ranked from most cited to least cited and the top 10 most cited papers were selected.

These papers represented 8 different requirements-based approaches for the deve-
lopment of adaptive systems, namely: Adaptive STS, FLAGS, LoREM, Necesity, QoS-
Aware Middleware, RELAX, Tropos4AS and Zanshin. Finally, we searched the complete
list of (224) publications returned in the systematic mapping for other papers addressing
one of these selected approaches, in order to provide a more complete content for their
comprehension. The search was performed using the name of the authors of the top 10
articles and returned 22 new publications to be analyzed (8 for Zanshin, 8 for RELAX, 3
for Tropos4AS and 3 for FLAGS). The final set of 32 publications was used not only for
building RASO (cf. Section 4), but also for validating it (cf. Section 5). In what follows,
we briefly summarize each of the approaches.

2.1. Adaptive STS

Dalpiaz et al. [2012] propose an architecture that, based on requirements models,
adds self-reconfiguring capabilities to a system using a monitor-diagnose-reconcile-
compensate (MDRC) loop. A monitor component collects, filters and normalizes

61: Cadernos do IME: Série Informatica: Vol. 41: Dezembro 2018

events/logs from the system, which serve as input to the diagnose component, respon-
sible for identifying failures and discovering their root causes. Finally, the reconfigurator
component selects, plans and deploys compensation actions in response to failures.

Adaptive-STS targets socio-technical systems (STSs), which consist of an inter-
play of humans, organizations, and technical systems, with an operational environment
that can change unexpectedly. The approach extends Tropos [Bresciani et al., 2004] and
uses goal models to represent requirements, then propose different algorithms for system
reconfiguration at runtime. For instance, one such algorithm finds all valid variants to sa-
tisfy a goal and compares them based on their cost (to compensate tasks that failed or the
ones that already started and will be canceled) and benefit (e.g., contribution to softgoals).

2.2. FLAGS

Based on KAOS [van Lamsweerde et al., 1991], the FLAGS approach [Baresi et al., 2010]
proposes crisp (Boolean) goals (specified in Linear Temporal Logic) whose satisfaction
can be easily evaluated, and fuzzy goals that are specified using fuzzy constraints, mostly
associated with non-functional requirements. The key difference between crisp and fuzzy
goals is that the former are firm requirements, while the latter are more flexible.

To provide semantics for fuzzy goals, FLAGS includes fuzzy relational and tem-
poral operators. Whenever a fuzzy membership function is introduced in FLAGS, its
shape must be defined by considering the preferences of stakeholders. This specifies exac-
tly what values are considered to be “around” the desired value. Additionally, in FLAGS,
adaptive goals define countermeasures to be executed when goals are not satisfied, using
Event-Condition-Action rules. The approach allows for the definition of adaptive goals
which execute a set of adaptation actions that can change the system’s goal model in dif-
ferent ways — add/remove/modify goals or agents, relax a goal, etc. — and in different
levels — in transient or permanent ways.

2.3. LoREM

Goldsby et al. [2008] propose the LOREM approach, which defines a systematic processes
for performing (Goal-Oriented) Requirements Engineering for adaptive systems. Its name
comes from the work of Berry et al. [2005], who defined four Levels of RE for Modeling
adaptive systems — Level 1: system developers identify the goals of the system and
the steady-state systems that are suitable for the domains that satisfy the goals; Level 2:
adaptation scenario developers creates the set of adaptation scenarios, which represent
the run-time transitions between source and target systems, including the requirements
for monitoring, decision-making and adaptation; Level 3: concerned with identifying the
adaptation infrastructure necessary to support the previously identified scenarios; Level
4: research done to improve the methods and techniques used in the other levels.

LoREM models requirements for Dynamically Adaptive Systems (DASs) using
i* [Yu et al., 2011] goal models, working on the aforementioned four levels, to represent
stakeholder objectives, non-adaptive and adaptive system behavior and adaptation mecha-
nism needs for a DAS. The approach offers an application-driven process that assumes a
mature set of adaptation mechanisms that enable a DAS to dynamically adapt.

62: Cadernos do IME: Série Informatica: Vol. 41: Dezembro 2018

2.4. The Necesity approach

Necesity [Botia et al., 2012] is an Ambient Assisted Living system that has been designed
to monitor elders which live alone and want to keep living independently. A system ca-
pable of detecting falls or similar problems by means of sensor networks with distributed
data in oder to acquire data regarding elderly home activity. Context-aware techniques
process the sensor data, providing pictures of the context of the elder. One of the main
contributions is related with the capability of the system to adapt its behavior to that of
the monitored elder based on a set of decision rules. In Necesity, the adaptability takes
into account the behavioral patterns of the monitored, using data analysis techniques to
allow the system to adjust its performance.

2.5. QoS-aware Middleware

QoS-aware middleware [Nahrstedt et al., 2001] is a solution to provide quality of service
(QoS) support, which is required by a new generation of QoS-sensitive applications. It
presents four key aspects of a QoS-aware middleware system: QoS specification (res-
ponsible for description of application behavior and QoS parameters), QoS translation
and compilation (responsible for translating specified application behavior into candidate
application configurations for different resource conditions), QoS setup (responsible for
appropriately selecting and instantiating a particular configuration) and QoS adaptation
(responsible for adapting to runtime resource fluctuations).

The operation of QoS-aware middleware systems is defined as: first, generating
appropriate QoS specifications; second, translating and compiling multiple application
configurations for the same application to be run in heterogeneous environments; then
followed by a selection of an appropriate configuration and discovering the participating
application components; and, finally, adapting QoS at multiple levels.

2.6. RELAX

The RELAX language [Sawyer et al., 2010; Whittle et al., 2010] aims at capturing uncer-
tainty declaratively with modal, temporal, ordinal operators and uncertainty factors pro-
vided by the language, capturing uncertainty in the way requirements can be met, mainly
due to environmental factors. Unlike goal-oriented approaches, it assumes that structu-
red natural language requirements specifications, containing the SHALL statements that
specify what the system must do, are available before their conversion to RELAX speci-
fications. The modal operators available, SHALL and MAY . . .OR, specify, respectively,
that requirements must hold or that there exist requirements alternatives (variability).

In RELAX, points of flexibility/uncertainty are specified declaratively, thus al-
lowing designs based on rules, planning, etc. as well as to support unanticipated adap-
tations. Some requirements are deemed invariant — they need to be satisfied no matter
what. Other requirements are made more flexible in order to maintain their satisfaction
by using “AS POSSIBLE”-type RELAX operators (e.g., “AS EARLY AS POSSIBLE”,
“AS CLOSE AS POSSIBLE”, etc.). Because of these, RELAX needs a logic with built-in
uncertainty to capture its semantics. The authors chose Fuzzy Branching Temporal Logic
for this purpose. It is based on the idea of fuzzy sets, which allows gradual membership
functions. Temporal operators such as EVENTUALLY and UNTIL allow for temporal
component in requirements specifications in RELAX.

63: Cadernos do IME: Série Informatica: Vol. 41: Dezembro 2018

Cheng et al. [2009b] integrate LOREM (Section 2.3) and RELAX, adding to the
mix an approach to systematically explore the uncertainty form the environment to which
the adaptive system will be deployed using threat modeling in KAOS. When a goal threat
is identified, there are three possible mitigation strategies that can be applied: (a) add
subgoals to handle the condition of the threat; (b) use RELAX to add flexibility to the
goal definition; (c) create new high-level goals that capture the objective of correcting the
failure. The last strategy works like a feedback loop that adapts the system whenever the
goal fails at runtime.

2.7. Tropos4AS

In Tropos4AS (Tropos for Adaptive Systems), Morandini et al. [2017] propose exten-
sions to the architectural design phase of Tropos to model adaptive systems based on
the Belief-Desire-Intention (BDI) model as a reference architecture [Rao and Georgeff,
1995]. The approach introduces new goal types — namely, maintain-goals, achieve-goals
and perform-goals — and a new inhibit relation between goals that specifies that a goal
(the inhibitor) has to be stopped in order for another goal (the inhibited) to be achie-
ved/maintained.

Tropos4AS also allows designers to model non-intentional elements using UML!
class diagrams, specifying resources that belong to an agent and the ones that belong
to the environment. The approach also allows for the modeling of undesirable (faulty)
states, which are known to be possible at runtime and should trigger system adaptation.
At the operational level, goal models are mapped to the Jadex? platform for run-time
implementation.

2.8. Zanshin

Zanshin [Souza et al., 2011; Souza, 2012] is an RE-based framework created for the
development of adaptive systems. Its main idea is to make elements of the feedback loop
responsible to provide adaptivity important entities in the requirements models. To do
that, Zanshin represent system requirements using the concepts of the Core Ontology for
Requirements Engineering (CORE) [Jureta et al., 2008, 2009], but with an i*-like syntax.

Its models are augmented with new elements, called Awareness Requirements
(AwReqs) — requirements that refer to the state of other requirements of a software sys-
tem at runtime, i.e., responsible for representing the parts of the system that the stakehol-
ders want it to be able to adapt — and Evolution Requirements (EvoReqs) — require-
ments that describe how other requirements are supposed to adapt/evolve in response to
an AwReq failure, i.e., they act directly over system requirements through a set of adap-
tation strategies. When combined with classic GORE constructs (goals, softgoals, tasks,
AND-OR refinements, and so on), these new elements are able to represent monitoring
and adaptation strategies during the execution of a software system.

Figure 2 represents the requirements model of a Meeting Scheduler system cre-
ated as a proof-of-concept for the Zanshin framework and used in Section 4 to illustrate
the concepts of RASO. AwReqs appear in the Meeting Scheduler requirements model as
small bold circles with arrows, pointing out to the elements of the system that need to

The Unified Modeling Language, http: //www.uml.org/.
2A BDI Agent System, http://jadex—agents.informatik.uni-hamburg.de/.

64: Cadernos do IME: Série Informatica: Vol. 41: Dezembro 2018

—
AR least 90% of particdpants atbend |- S S
o | Meetngs cost ¢ S)
© Low oost b -~ lees than € 100 S SuccessRate(75%) MHPE"“dF'BﬂW_F_;:'
—_ B - e o, [e
T (" Schedube ™ nirt TrandDes reasa(30d, 2)
:ﬂ‘ﬁ”**”ﬂfﬂi?ﬁwa _ meeting _/ g P
‘p'\r.-n erFail — M_....'_ '-"‘""_ﬂ-"" == === —_— -
. gynotTrand A e -~ T
.- U'lara:t'erlze '-, |' 2 Cnlect " Decrease{Td, 2) % mrrl—a:lo“' Choosa { Manage
.\ mesting \ hIThEEIJIE] [T e ' . SEﬁEdl.lh: _.-". A) mEEtll'rg_.__/'
\ / /Find 2 suitable’, g N g
= T . mom /) N <G, StateDelta
call "l."h- — J"hh_ - ; S OR .".'\\ F; Fa ""-,' %, {Und,”, Sm)
\participants /" | [:‘n\‘* / Schedule \ ./ Cancel Yy
" Emal ./ Colect Y T4 Manually /S, meeting A
/ Emai ,.' t t N I O ke \\-\—}. \
au omatica 1r f se loca " ca|| e, —————, " ¢ Confirm
\partidpants ST (U A .mﬁ"m) [Calbotels N oem t occumence [
— —7 — ! Ja.na r,.;.u-1l.t\reﬂl.'u:rn‘L } !
7 e —’ | e /
Partnupants use - e fucad N EEEE
the system calendar _ A, iC Local roomms / _ P ”;ﬁﬁf';?";f‘a"u"
/" Collet Y, / Findalocal © f| avadable { Book room M o Fast T ’

I Medullng P

umM from system I: A RFM

calendar e -
S b iy ~ 4 'vla:,Fgul el 1, Td) - :m
(R L rer— i
J Get room i ':."' List avadable "- l:"' Us= avallable "-:“. ?nﬁlt:f "} in le=s than a day
SuscassAntalB0%) '-._ suggestions ,.-"ll ', local rooms JII.-' Y, ram J "'.,' mesting | SuccessRaie(50%)
;’ s vﬂ? , D T Kk ‘ Domain assumption ‘ - Refinement R
N C 0 oa as - -) A
< Goa' gq 2 (Quality constraint | ¢ Control Variable)

Figura 2. Requirements model of a Meeting Scheduler system, created with the
Zanshin approach [Souza, 2012]

have their states monitored. EvoReqs are not graphically represented in the requirements
model, however, they are implemented as a code artifact that will be executed by Zanshin
when an AwReq fails. For instance, if, for some reason, a meeting cannot be properly
scheduled in the system, AR1 (NeverFail, at the top-left corner of the model) will trigger
the EvoReq Retry Characterize Meeting, that will make the system perform a rollback,
wait for 5 seconds, and then try to schedule the meeting again.

3. Ontological Foundations

The Requirements-based Adaptive Systems Ontology (RASO) was built using SABiO: a
Systematic Approach for Building Ontologies [Falbo, 2014], a well-established Ontology
Engineering method. We chose SABiO because it is focused on the development of do-
main ontologies and has been successfully used for developing several ontologies in the
Software Engineering domain (e.g., [Bringuente et al., 2011; Ruy et al., 2016]).

SABiO’s development process is composed of five phases — (1) purpose identi-
fication and requirements elicitation; (2) ontology capture and formalization; (3) design;
(4) implementation; and (5) testing — accompanied by widely accepted support proces-
ses, such as knowledge acquisition, reuse, documentation and evaluation. The first two
phases of SABiO’s development process aim to produce a reference domain ontology.
Since we were interested in developing a reference ontology, we performed the first two
phases of the method.

At the first phase, requirements for the ontology are elicited in the form of
Competency Questions (CQs), which are questions that the ontology should be able to
answer [Griininger and Fox, 1995]. In the following phase, relevant concepts and relations

65: Cadernos do IME: Série Informatica: Vol. 41: Dezembro 2018

for the domain should be identified and a conceptual model should be built. Requirements
elicitation and ontology capture for RASO are presented in Section 4.

SABIiO explicitly recognizes the importance of using foundational ontologies in
the ontology development process to improve the ontology quality, representativeness and
formality. Thus, we grounded RASO in the Unified Foundational Ontology (UFO) [Guiz-
zardi et al., 2008], a well-established foundational ontology. UFO offers a comprehensive
set of categories to tackle the specificities of the targeted domain and, as SABiO, it has
been successfully employed in the development of several ontologies in the Software En-
gineering domain (e.g., [Bringuente et al., 2011; Ruy et al., 2016]), including the ones
that were reused/extended in this work.

SABIO also suggests that existing ontologies on related domains should be reused.
The Software Engineering Ontology Network (SEON) [Ruy et al., 2016] includes ontolo-
gies that are related to the target domain of this work. Thus, these ontologies were reused
by RASO, facilitating its integration into SEON. The set of reused ontologies include:
the Software Ontology (SwO), the Reference Software Requirements Ontology (RSRO)
and the Runtime Requirements Ontology (RRO) [Duarte et al., 2018], all of which are
connected to SEON’s core ontology: the Software Process Ontology (SPO) [Bringuente
et al., 2011]. We decided to reuse concepts from these ontologies as their domains are in-
trinsically related to the domain of requirements-based adaptive system. Moreover, they
are all grounded in UFO, guaranteeing compatibility at the foundational level. Among
these ontologies, RRO has a particular prominent role, given that it describes the use of
requirements artifacts at runtime, which is key to adaptive systems. Given how close
RASO is of RRO, we can say that the former is an extension of the latter.

Figure 3 shows the SEON view presenting the concepts reused by RASO, using
a UML class diagram primarily for visualization (for an in-depth discussion and a more
formal characterization, refer to [Duarte et al., 2018]). As shown, these concepts derive
from the notion of Artifact from SPO, i.e., an Object (in the sense of UFO) intentionally
made to serve a given purpose in the context of a software product or organization. We are
particularly interested in three types of Artifacts: Software ltems — pieces of software
produced during the software process —, Documents — any written or pictorial infor-
mation related to the software development, usually presented in a predefined format —
and Information ltems — any relevant information produced during the software process
for human use.

As defined in SwO [Duarte et al., 2018], a Software System is a Software ltem
that intends to implement a System Specification, which is a Document containing a
set of requirements for a system, defining its desired functions and features in an abstract
way, without constraining its behavior. Software Systems are constituted of Programs.
A Program is a Software Item which aims at producing results through execution on a
computer, as prescribed by the Program Specification, a Document that describes the
structure and functions of a Program. Finally, a Program is constituted of Code, a
Software ltem representing a set of computer instructions and data definitions expressed
in a programming language. A Program is constituted by Code, but it is not identical
to Code. Code can be changed (e.g., to fix a bug) without altering the identity of its
Program, which is anchored to the program’s essential property: its intended Program
Specification, which the Code implements.

66: Cadernos do IME: Série Informatica: Vol. 41: Dezembro 2018

UFO-C:Object | UFO-C:Normative Description | UFO-C
s

* | SPO:Artifact built following B> SPO::Procedure =g

0..* 0.*

depicts, RSRO
— [RsRo]
| \ @jomy

0.*
| SPO:Information Item | | SPO:Document | SPO:Software Item
-dintends to implement AN
: o] | |
* 0.*
| RSRO:Requi Artifact |1 <>| SwO::System Specification | | SwO:Software System | SwO:Program | SwO:Code
L.* g . 1 *[0..%
L.* ‘ dintends to satisfy intends to satisfy# 0.* | constituted of L
0.* ‘ |0“i 1 <dinteds to implement

| SwO:Program Specification |

0..1

<« /intends to satisfy

| RRO:Design Time Requirement Artifact

RRO=RRT Program

| RRO:Runtime Requi Artifact I < /intends to satisfy
- o

{disjoint, incomplete} %

]
| RRO:Change Runtime Requirement Artifact

fintends to satisfy B>
* 0.*

RRO:Adaptation Program

| RRO:Monitoring Runtime Requi Attifact | RRO:C: liance Program
| /intends to satisfy P> 0..*

Figura 3. SEON’s view showing concepts and relations reused by RASO.

Given our focus on requirements-based adaptive systems approaches, we reuse
from RSRO the concept of Requirement Artifact, an Information ltem that describes a
stakeholder’s requirement (concepts also present in RSRO, but out of scope here), most
likely as the result of some requirements documentation activity in the Requirements En-
gineering process. In the context of adaptive systems, we are particularly interested in a
special type of Requirement Artifact specified in RRO, namely, a Runtime Require-
ment Artifact (RRA). Unlike Design Time Requirement Artifacts, RRAs are mani-
pulated by running Programs, i.e., at runtime. Such Programs are said RRT (Require-
ments at Runtime) Programs, which intend to satisty one or more RRAS, acting over
other running Programs, referred to as Target Programs. RRO specifies two particu-
lar types of use of requirements at runtime: Compliance Programs intending to satisfy
Monitoring RRAs and Adaptation Programs intending to satisty Change RRAs.

4. Requirements-based Adaptive Systems Ontology

In this section, we present the Requirements-based Adaptive Systems Ontology (RASO),
a domain ontology about requirements-based approaches for adaptive systems. Following
the first steps of SABiO, we defined the purpose of RASO: to be a formal and explicit
representation of the concepts of adaptive systems based on requirements models. More-
over, we identified the following intended uses for RASO:

1. To serve as conceptual basis to solve interoperability problems among different
requirements-based approaches for the development of adaptive systems, thus ser-
ving as a well-founded vocabulary to improve understanding and knowledge sha-
ring in the domain of requirements for adaptive systems, being especially helpful
for requirements engineers working in this field;

2. To serve as a supporting tool for the creation or reengineering of requirements-
based approaches for the development of adaptive systems;

67: Cadernos do IME: Série Informatica: Vol. 41: Dezembro 2018

3. To serve as conceptual model for the creation and/or integration of tools suppor-
ting the intended uses described in (1) and (2) above.

Once its purpose and intended uses were defined, requirements for RASO
were elicited and documented in the form of Competency Questions (CQs) through
a highly iterative process of requirements elicitation/documentation and ontology cap-
ture/formalization. The CQs for RASO are:

CQ1: What is an adaptive system?

CQ2: What are the components of an adaptive system?

CQ3: How are adaptations performed in an adaptive system?

CQ4: How are adaptive systems specified?

CQS5: What requirements does the adaptive system handle at runtime?

Figure 4 shows the conceptual model of RASO, relating concepts of its domain to
the ones reused from the Software Engineering Ontology Network (SEON, cf. Section 3).
Next, we show how RASO provides a clear and precise description of this domain.

An Adaptive System is a special kind of Software System, constituted of one
or more Adaptive Feedback Loop Control Programs (feedback loop or controller)
and base programs (often referred to in the literature as target systems [Souza, 2012]),
represented in RASO as Adaptable Target Program. Once the base program is inte-
grated into a feedback loop (in other words, it is made adaptive using any given approach
for the development of adaptive systems [Souza and Mylopoulos, 2011]), it becomes an
Adaptive System. Hence, the programs that need to perform some adaptation will be the
Adaptable Target Programs. Considering the Zanshin approach (cf. Section 2.8), for
example, this integration consists of implementing a callback API specified by Zanshin.

As Programs, both Adaptable Target Program and Adaptive Feedback Loop
Control Program intend to implement a Program Specification in order to satisfy Re-
quirement Artifacts. The former implements what we informally call the main functions
of the system, e.g., schedule meetings, whereas the latter implements adaptation functi-
ons, i.e., monitor the main functions and adapt them if needed, forming a feedback loop
(e.g., the MAPE loop [Kephart and Chess, 2003]). For instance, if a self-adaptive Meeting
Scheduler (adaptive system composed of base program and controller program) detects a
low participation rate in meetings, it could send e-mails to invited participants to properly
collect their timetables.

Software Systems intend to implement a System Specification [Duarte et al.,
2018]. As such, an Adaptive System intends to implement an Adaptive System Speci-
fication. In particular, besides specifying the main functions of the system, an Adaptive
System Specification is composed of one or more Runtime Requirement Artifacts
(RRAs) regarding the system’s self-adaptation functions. This particular kind of speci-
fication is built following an Adaptive System Design Framework, which SPO [Brin-
guente et al., 2011] considers a Procedure. For instance, in [Souza, 2012], the author
presents an Adaptive System Specification for a Meeting Scheduler Adaptive System,
based on the Zanshin Adaptive System Design Framework, containing Awareness Re-
quirements (Monitoring RRAs and Analyze RRAS) to monitor some of the Meeting
Scheduler’s functions (e.g., low participation in scheduled meetings) and Evolution Re-
quirements (Plan RRAs and Change RRAS) to adapt these functions if necessary (e.g.,
start collecting timetables properly via e-mail).

: Dezembro 2018

tica: Vol. 41

a

Inform

~

Série

68: Cadernos do IME

“y50es 01 s pusl

snes 01 spuajul/

o]
* _ weabolg ..E.:._m_a_l_«:.ﬁ

] 1

_ weiboid pzZARUY _

T

3 o

"0

_ weibolgd dueljdwod:oyy _

2T » T

+"0

_ weiboid uoneidepy:oyy _

,‘:o

PeJIY JudWwRJInbay awnuny IzAfeuy _

Aysnes o [spuaiul/
=T 4

*

0_ weibosd |[os3uo) dooq ydeqpazd aandepy
-0

=T

_ PeJIUY JuWAINbIY dwnuny ue|d _

Aysnes oy ypuajul/

T

_ Peyiuy Juawanbay awuny BuuoluONEOHY _

T

_ PEHUY JUaWAINbay awnuny abueyd:ow

Te3adumoour JC_M_W_E

_ DEJNIY JUWRJINbaY JWnUMY:oYY

_ weibold 1 ¥H:0OHY

=
-1 «fisnes o1 spuspu/

*

weibolg @b6ae]

#T

a|qeidepy

=T

_ Pejiuy Juawalinbay:ousy |+ T

0svd

0 pa1isuod

wesboug 3ab61e]0HY

<O paamnsuod

A sjo.uod

A
J0 paininsuod

T 1 _ jaomawesy ubisag waisAs aandepy

0
wR1sAS aandepy _«

1U3WR|dwi 01 SPUAU| P 1

<A uonesypads wWaisAs aandepy _

*

W3)SAS 31BMIJOSIOMS |

10

JuBW3dW] 03 S pusll

K

Spal p

uonesyRads weiboid:ioms | Ajsnes 03 spuajul

=0

+0

451185 01 spual

T T

T [T

_ W3} UONBULIOUE0DS _

0¥sy

wid)| 21eMIJOS:0dS

JUAWNY0Q:0dS

oms

fuofs|

p} aimeu:

PEHUVEOLS

*

24Npa20IdEQdS

buimoyjos 3inq -

Figura 4. The Requirements-based Adaptive Systems Ontology (RASO).

69: Cadernos do IME: Série Informatica: Vol. 41: Dezembro 2018

Finally, the self-adaptation functions in the Adaptive System Specification are
implemented by the Adaptive System by means of its Adaptive Feedback Loop Con-
trol Programs, which are constituted by four particular kinds of RRT (Requirements at
Runtime) Programs: Compliance Programs intend to satisfy the Monitoring RRAs
in the specification, Analyzer Programs intend to satisty the Analyze RRAS in the
specification, Planner Programs intend to satisty the Plan RRAs in the specification
and Adaptation Programs intend to satisfy the Change RRASs in the specification.
Again, using Souza’s work as example [Souza, 2012], the Zanshin approach provides
an implementation of an Adaptive Feedback Loop Control Program based on the
Eclipse® platform and constituted by OSGi* bundles, among which the Monitoring Bundle
(Compliance Program and Analyzer Program) monitors the satisfaction of Awareness
Requirements and reports to the Adaptation Bundle (Planner Program and Adaptation
Program), which analyze Evolution Requirements in order to adapt.

5. Evaluation

In order to evaluate the Requirements for Adaptive Systems Ontology (RASO), we ap-
plied verification and validation techniques, as prescribed by SABiO. For verification,
SABIiO suggests a table that shows the ontology elements that are required to answer the
competency questions (CQs) that were raised, thus demonstrating that the ontology satis-
fies the requirements as documented. For validation, the ontology should be instantiated
using real-world entities, demonstrating that it is able to represent real-world situations.

Table 2 shows how each of the predefined CQs are answered by concepts and re-
lations of RASO. This table can also be used as a traceability tool, supporting ontology
change management. It is worthwhile to pointy out that all concepts of RASO are menti-
oned in Table 2. This shows they are both necessary and sufficient to fulfill the ontology’s
requirements.

For validation, we studied the 32 publications about the 8 different approaches
selected in our systematic mapping of the literature (cf. Section 2). Then, we identified
instances of concepts from RASO (and a few key concepts of RRO as well) in each of
the approaches, producing the instantiation table divided in tables 3 and 4. Note that an
m-dash (—) in a cell does not mean that the concept is not present at all in the respective
approach, but instead that it is not explicitly named.

The successful instantiation of RASO with entities from these approaches is an
indication of the appropriateness of the proposed ontology as a reference model of this
domain. Tables 3 and 4 also show that RASO, as a conceptual model, does not present
the problems discussed by Guizzardi [Guizzardi et al., 2008]:

e Construct Overload: the concepts of RASO represent a single entity in the appro-
aches, i.e., they are not overloaded with meaning;

e Construct Excess: all concepts of RASO have instances in most of the approaches,
i.e., there is no unnecessary concepts in the ontology with respect to the domain;

e Construct Redundancy: no two concepts of RASO point to the same entity in any
of the approaches, i.e., the concepts of the ontology are not redundant;

http://www.eclipse.org
‘http://www.osgi.org

70: Cadernos do IME: Série Informatica: Vol. 41: Dezembro 2018

Tabela 2. Verification of RASO’s Competency Questions.

CQ Concepts and Relations
CQ1 - What is an adaptive Adaptive System subtype of Software System,
system? Adaptive System intends to implement Adaptive System Specification.
Adaptive System subtype of Software System;
CQ2 - What are the Software System constituted of Program;
components of an adaptive Adaptive System constituted of Adaptable Target Program and Adaptive Feedback
system? Loop Control Program;

Adaptable Target Program subtype of Target Program subtype of Program;

Adaptive Feedback Loop Control Program subtype of Program.

CQ3 - How are adaptations per-

formed in an adaptive system? Adaptive Feedback Loop Control Program controls Adaptable Target Program.

Adaptive System Specification subtype of System Specification;

CQ4 - How are adaptive

systems specified? Runtime Requirement Artifact part of Adaptive System Specification;

Adaptive System Specification built following Adaptive System Design Framework.

Adaptive System constituted of Adaptable Target Program and Adaptive Feedback
Loop Control Program;

{Compliance Program, Analyzer Program, Planner Program, Adaptation Program}

CQS5 - What requirements does part of Adaptive Feedback Loop Control Program;
the ?dapqtive system handle at Compliance Program intends to satisfy Monitoring RRA;
runtime’?

Analyzer Program intends to satisfy Analyze RRA,

Planner Program intends to satisfy Plan RRA;

Adaptation Program intends to satisfy Change RRA;

{Monitoring RRA, Analyze RRA, Plan RRA, Change RRA} subtype of Runtime
Requirement Artifact.

e Incompleteness: the entities related to the domain of adaptive systems in the dif-
ferent approaches were all mapped to concepts of RASO, i.e., the ontology is
complete with respect to its given scope.

As such, it can serve as conceptual basis to solve interoperability problems
between different approaches for the development of adaptive systems — tables 3 and 4
even serve as starting point for mapping concepts among the 8 selected approaches.
RASO can also be used to develop or integrate existing software tools in this domain,
as done, e.g., in the domain of software measurement [Fonseca et al., 2017].

Another interesting use of the ontology is to perform ontological analysis of the
modeling languages used in these approaches, offering recommendations to clarify their
semantics and ensure expressiveness, as done, for instance, in the domain of service-
oriented enterprise architectures [Nardi et al., 2014]. Tables 3 and 4 even provide us with
hints regarding the 8 selected approaches, as they could also be evaluated with respect to
lucidity, soundness, laconicity and completeness [Guizzardi et al., 2008], as we did with
RASO above. For instance, we were not able to instantiate any of the Program concepts
for the RELAX approach, as the papers define the specification language, but do not
provide an implementation. As another example, the QoS-aware Middleware approach
does not make explicit their Monitoring Runtime Requirement Artifact. Such feedback
could help improve these approaches.

In general, the evaluation of RASO shows that it can act as a well-founded voca-
bulary of the domain of requirements-based adaptive systems design, improving commu-
nication, learning and problem-solving in this domain.

71: Cadernos do IME: Série Informatica: Vol. 41: Dezembro 2018

Tabela 3. Validation of RASO by instantiating its concepts according to popular
approaches for the development of adaptive systems (part 1).

Concept Approach for the Development of Adaptive Systems
Adaptive System Adaptive STS FLAGS LoREM Unnamed approach
Design Framework applied to Necesity
Combination of the Combination of the The Necesity system
. Smart Home example Laundry System s o and the Context
Adaptive System with the adaptation example with the The GridStix system Management
controller adaptation controller Middleware
. . Goal model
Adaptive System Plan specifications for specification for the G(?al mo del Adaptive timers
. the Smart Home specification for .
Specification Laundry System e algorithm
example GridStix
example
Adaptable Target Smart Home example Lauzi?rfnsi/:tem GrldStu: ssizidy—state The Necesity system
Program implementation . pic. A . implementation
implementation implementation
Self-Reconfiguration
Adaptive Feedback co.mponent (MomFor- FLAGS framework Adaptation Context Management
Loop Control Diagnose-Reconcile- - . . .
implementation infrastructure Middleware
Program Compensate
cycle)
Analyze Runtime . Condition (Adaptive . .
Requirement Artifact Goal)
Analyzer Program — Data Collector — —
Plan Runtime o Objective (Adaptive - o
Requirement Artifact Goal)
Planner Program — Monitor — —
Cgmpllance Monitor component Monitor Momtor.mg Monitoring software
rogram mechanism
Monitoring Runtime | - - 6ot conditions | | egers (Adaptive Decision-making Set of decision rules
Requirement Artifact Goal) mechanism
Adaptation Program Reconfiguration Monitor Adap tation Adapter component
component mechanism
Parameters which are
Change Runtime - Actions (Adaptive . set based on the
Requirement Artifact Activation rules Goal) Adaptive step history of use of the
system

6. Related Work

Qureshi et al. [2011] proposed a new version of the Core Ontology for Requirement En-
gineering (CORE) [Jureta et al., 2008, 2009], introducing two new concepts (context and
resource) and relations (relegation and influence) on top of CORE (which concerns Re-
quirements Engineering in general) in order to properly represent possible changes that
might occur in requirements, at runtime. The authors claim that combining the new ele-
ments with the ones that are originally used by the goal modeling language Techne [Jureta
et al., 2010], they are able to support the definition of the runtime requirements adapta-
tion problem. In comparison with RASO, the ontology of Qureshi et al. [2011] does not
represent concepts that were found in the approaches selected in our systematic mapping
of the literature, such as Monitoring RRA and Change RRA, for example. Instead, it
includes concepts and relations that are not strongly related to this domain (i.e., were not
commonly found in the selected approaches), such as resource and relegation.

Soares et al. [2016] propose a core ontology to assist requirements elicitation and
specification for adaptive systems, based on the ontology of Qureshi et al. [2011] — which
they deemed incomplete —, adding concepts extracted from the modeling dimensions for

72: Cadernos do IME: Série Informatica: Vol. 41: Dezembro 2018

Tabela 4. Validation of RASO by instantiating its concepts according to popular
approaches for the development of adaptive systems (part 2).

Concept Approach for the Development of Adaptive Systems
Adaptive System QoS-aware .
Design Framework Middleware RELAX TroposdAS Zanshin
Combination of a Combination of the Coml:?matlon of the
. . . . Meeting Scheduler
. video streaming iCleaner example with .
Adaptive System L. . — example with the
application with the the Tropos4AS Eclinse/OSGi-based
QoS Middleware Middleware 1P .
implementation
Adaptive System e Goal mOdEI f(?r the Goal model for the Goal .model for the
e s Qos Specification Ambient Assisted . Meeting Scheduler
Specification . iCleaner example
Living example example

Meeting Scheduler

Adaptable Target A video streaming Ambient Assisted iCleaner example
Program application Living (ALL) example implementation . example .
implementation
. . The
Adaptive Feedback QoS Middleware Tropos4AS . .
Loop Control (QoS-aware resource — Middleware (MAPE Ec.hpse/OSGl-t.)ased
Program management) Loop) implementation
(MAPE Loop)
Analyze Runtime QoS parameter Specification using Failure Conditions or .
Requirement Artifact p REL operator Drop Conditions
Analyzer Program QoS trans_lan_on and — — —
compilation
Plan Runtime o o Plan o
Requirement Artifact
Planner Program QoS setup — — —
Compliance Observer component — Monitoring BDI agent Monitoring OSGi
Program bundle
Monitoring Runtime . Specification using Satisfaction conditions Awareness
Requirement Artifact MON operator Requirement
Adaptation Program QoS adaptation — Adaptation BDI agent Adap L?;%TSOSGI
Cha}nge Runtlme Apphcatlol} 'fldaptanon Relaxed requirements Recovery activities EVO.I ution
Requirement Artifact policies Requirement

adaptive systems [Andersson et al., 2009]. Besides inheriting the aforementioned pro-
blems of [Qureshi et al., 2011], the ontology is not properly based on a foundational onto-
logy, is presented only in its operational form (in OWL) and includes concepts pertaining
to the area of context-aware systems (claiming they subsume adaptive systems, a claim
which we find debatable). On the other hand, RASO is a reference ontology, founded on
UFO and focused exclusively on the concepts of the adaptive systems domain.

Reinhartz-Berger et al. [2013] propose a conceptual model of software behavior
based on the foundational ontology by Bunge [1977], which can be used to model the ex-
pected behavior of a system (its requirements) and alternative behaviors that the running
program can actually perform, thus supporting self-adaptation decisions by comparing
alternatives on: (1) how well they meet the requirements and (2) the effort needed to
switch behaviors. Their work uses an ontological approach to model the system’s beha-
vior in order to foster self-adaptation, i.e., it is a requirements-based approach for the
development of adaptive systems. Our work instead provides an ontology for the domain
of requirements for adaptive-systems, i.e., it describes concepts used by different approa-
ches (including [Reinhartz-Berger et al., 2013], which could be instantiated like the works
included in tables 3 and 4).

73: Cadernos do IME: Série Informatica: Vol. 41: Dezembro 2018

Finally, regarding the systematic mapping study we present in Section 4, Yang
et al. [2014] performed a systematic literature review to investigate what modeling
methods, activities, quality attributes, application domains and research topics have been
studied in the area of requirements engineering for adaptive systems and how well these
studies have been conveyed. Our mapping, although more superficial than a review, bears
some similarities with their work, such as the research method [Kitchenham and Charters,
2007]. We did consider the possibility of using their study as the knowledge base for buil-
ding RASO instead of performing a new one. However, since this systematic mapping is
already five years old, we decided that a new study was needed in order to not neglect the
recent advances that were achieved in this research area. Moreover, updating their review
would have taken much more effort than producing a new mapping.

Our systematic mapping study showed that a almost a fifth of the requirements-
based approaches for the development of adaptive systems make use of ontologies as part
of their proposed methods. Among them, CORE [Jureta et al., 2008, 2009] is the most ci-
ted work. However, as mentioned before, CORE represents the domain of Requirements
Engineering in general, whereas RASO focuses on Requirements Engineering for adap-
tive systems (based on RSRO [Duarte et al., 2018] for the reasons discussed in Section 3).
This shows both a growing interest in the use of ontologies in this domain and a gap for
ontologies that are specifically tailored for adaptive systems, which RASO intends to fill.

7. Conclusions

This paper presented RASO, the Requirements for Adaptive Systems Ontology, a domain
reference ontology about requirements-based development of adaptive systems. RASO
was built using the SABiO ontology engineering method, reusing concepts from existing
ontologies on Software Engineering and built on the foundational ontology UFO. Re-
quirements elicitation and ontology capture were based on selected publications from a
systematic mapping of the literature regarding this domain. The ontology was evaluated
by verifying that its proposed conceptual model answers all its Competency Questions
and by instantiating real-world entities extracted from the most cited approaches from the
systematic mapping of the literature using the concepts defined by RASO.

Given how RASO was elicited and validated, we consider that it successfully re-
presents the state-of-the-art on requirements-based approaches for the development of
adaptive systems, achieving its purposes of serving as a well-founded vocabulary to im-
prove understanding and knowledge sharing in this domain and as conceptual basis to
solve interoperability problems or for the creation or reengineering of approaches for
adaptive systems development.

As future work, we are considering: (a) studying the approaches returned in our
systematic mapping study that did not make the top 10 citations per year cut, in order to
further validate RASO or complement its conceptual model; (b) providing a more formal
characterization of RASO; (c) properly integrating RASO in the Software Engineering
Ontology Network mentioned in Section 3; (d) building an operational version of RASO
in order to implement a prototype on interoperability among different requirements-based
approaches for adaptive systems; (e¢) combined with the Goal-Oriented Requirements On-
tology (GORO) [Negri et al., 2017], performing analysis and reengineering of the Zanshin
approach, including its modeling language and Adaptive Feedback Loop Control Pro-

74: Cadernos do IME: Série Informatica: Vol. 41: Dezembro 2018

gram implementation; and (f) building an method for evaluating adaptive systems, as well
as creating metrics to qualitatively measure these systems.

Acknowledgments

NEMO (http://nemo.inf.ufes.br) is currently supported by Brazilian research
funding agencies CNPq (process 407235/2017-5), CAPES (process 23038.028816/2016-
41), and FAPES (process 69382549/2015).

Referéncias

Andersson, J., de Lemos, R., Malek, S., and Weyns, D. (2009). Modeling Dimensions of
Self-Adaptive Software Systems. In Software Engineering for Self-Adaptive Systems,
volume 5525, pages 27-47. Springer.

Baresi, L., Pasquale, L., and Spoletini, P. (2010). Fuzzy Goals for Requirements-driven
Adaptation. In Proc. of the 18th IEEE International Requirements Engineering Confe-
rence, pages 125-134. IEEE.

Berry, D. M., Cheng, B. H. C., and Zhang, J. (2005). The Four Levels of Requirements
Engineering for and in Dynamic Adaptive Systems. In Proc. of the 11'" International
Workshop on Requirements Engineering: Foundation for Software Quality, pages 95—
100.

Borst, W. N. (1997). Construction of engineering ontologies for knowledge sharing and
reuse. PhD thesis, Institute for Telematica and Information Technology, University of
Twente, Enschede, The Netherlands.

Botia, J. A., Villa, A., and Palma, J. (2012). Ambient Assisted Living system for in-
home monitoring of healthy independent elders. Expert Systems with Applications,
39(9):8136-8148.

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., and Mylopoulos, J. (2004). Tro-
pos: An Agent-Oriented Software Development Methodology. Autonomous Agents
and Multi-Agent Systems, 8(3):203-236.

Bringuente, A. C. O., Falbo, R. A., and Guizzardi, G. (2011). Using a Foundational
Ontology for Reengineering a Software Process Ontology. Journal of Information and
Data Management, 2(3):511-526.

Bunge, M. (1977). Treatise on basic philosophy, Vol. 3: Ontology I: The furniture of the
world.

Cheng, B. H. C. et al. (2009a). Software Engineering for Self-Adaptive Systems: A
Research Roadmap. In Software Engineering for Self-Adaptive Systems, volume 5525,
pages 1-26. Springer.

Cheng, B. H. C., Sawyer, P.,, Bencomo, N., and Whittle, J. (2009b). A Goal-Based Mo-
deling Approach to Develop Requirements of an Adaptive System with Environmental
Uncertainty. In Proc. of the 12th International Conference on Model Driven Enginee-
ring Languages and Systems (MODELS 09), pages 468—483. Springer.

Dalpiaz, F., Giorgini, P., and Mylopoulos, J. (2012). Adaptive socio-technical systems: a
requirements-based approach. Requirements Engineering, 18(1):1-24.

de Lemos, R. et al. (2013). Software Engineering for Self-Adaptive Systems: A Second
Research Roadmap. In Software Engineering for Self-Adaptive Systems I1, pages 1-32.
Springer.

75: Cadernos do IME: Série Informatica: Vol. 41: Dezembro 2018

Dermeval, D., Vilela, J., Bittencourt, I. I., Castro, J., Isotani, S., Brito, P., and Silva, A.
(2016). Applications of ontologies in requirements engineering: a systematic review of
the literature. Requirements Engineering, 21(4):405-437.

Duarte, B. B., Leal, A. L. d. C., Falbo, R. d. A., Guizzardi, G., Guizzardi, R. S. S., and
Souza, V. E. S. (2018). Ontological Foundations for Software Requirements with a
Focus on Requirements at Runtime. Applied Ontology, preprint(preprint):1-33.

Falbo, R. A. (2014). SABiO: Systematic Approach for Building Ontologies. In Proc.
of the Proceedings of the Ist Joint Workshop ONTO.COM / ODISE on Ontologies in
Conceptual Modeling and Information Systems Engineering. CEUR.

Fonseca, V. S., Barcellos, M. P., and de Almeida Falbo, R. (2017). An ontology-based
approach for integrating tools supporting the software measurement process. Science
of Computer Programming, 135:20-44.

Goldsby, H. J., Sawyer, P., Bencomo, N., Cheng, B. H. C., and Hughes, D. (2008). Goal-
Based Modeling of Dynamically Adaptive System Requirements. In Proc. of the 15th
Annual IEEE International Conference and Workshop on the Engineering of Computer
Based Systems, pages 36-45. IEEE.

Griininger, M. and Fox, M. (1995). Methodology for the Design and Evaluation of Onto-
logies. In IJCAI’95, Workshop on Basic Ontological Issues in Knowledge Sharing.

Guizzardi, G. (2007). On ontology, ontologies, conceptualizations, modeling languages,
and (meta) models. Frontiers in artificial intelligence and applications, 155:18.

Guizzardi, G., Falbo, R. d. A., and Guizzardi, R. S. S. (2008). Grounding software domain
ontologies in the unified foundational ontology (ufo): The case of the ode software pro-
cess ontology. In Proc. of the 11th Iberoamerican Conference on Software Engineering
(CIbSE), pages 127-140.

Jureta, I., Mylopoulos, J., and Faulkner, S. (2008). Revisiting the core ontology and pro-
blem in requirements engineering. In International Requirements Engineering, 2008.
RE’08. 16th IEEE, pages 71-80. IEEE.

Jureta, 1. J., Borgida, A., Ernst, N. A., and Mylopoulos, J. (2010). Techne: Towards a
new generation of requirements modeling languages with goals, preferences, and in-
consistency handling. In Requirements Engineering Conference (RE), 2010 18th IEEE
International, pages 115-124. IEEE.

Jureta, 1. J., Mylopoulos, J., and Faulkner, S. (2009). A core ontology for requirements.
Applied Ontology, 4(3-4):169-244.

Kephart, J. O. and Chess, D. M. (2003). The vision of autonomic computing. Computer,
36(1):41-50.

Kitchenham, B. A. and Charters, S. (2007). Guidelines for performing Systematic Lite-
rature Reviews in Software Engineering. Technical report, Keele University, UK.

Morandini, M., Penserini, L., Perini, A., and Marchetto, A. (2017). Engineering require-
ments for adaptive systems. Requirements Engineering, 22(1):77-103.

Nahrstedt, K., Xu, D., Wichadakul, D., and Li, B. (2001). QoS-Aware Middleware
for Ubiquitous and Heterogeneous Environments. IEEE Communications Magazine,
39(11):140-148.

Nardi, J. C., de Almeida Falbo, R., and Almeida, J. P. A. (2014). An Ontological Analysis
of Service Modeling at ArchiMate’s Business Layer. In Proc. of the 18th International
IEEE Enterprise Distributed Object Computing Conference, pages 92—100. IEEE.

Negri, P. P, Souza, V. E. S, Leal, A. L. d. C, Falbo, R. A., and Guizzardi, G. (2017).
Towards an Ontology of Goal-Oriented Requirements. In Proc. of the 20th Ibero-
American Conference on Software Engineering, Requirements Engineering track.

76: Cadernos do IME: Série Informatica: Vol. 41: Dezembro 2018

Pecanha, C. C., Duarte, B. B., and Souza, V. E. S. (2018). RASO: an Ontology on
Requirements for the Development of Adaptive Systems. In Proc. of the 21st Workshop
on Requirements Engineering (WER 2018), pages 1-14, Rio de Janeiro, RJ, Brasil.
PUC-RIO.

Petersen, K., Vakkalanka, S., and Kuzniarz, L. (2015). Guidelines for conducting syste-
matic mapping studies in software engineering: An update. Information and Software
Technology, 64:1-18.

Qureshi, N. A., Jureta, 1. J., and Perini, A. (2011). Requirements engineering for self-
adaptive systems: Core ontology and problem statement. In International Conference
on Advanced Information Systems Engineering, pages 33—47. Springer.

Rao, A. S. and Georgeff, M. P. (1995). BDI Agents: From Theory to Practice. In Proc.
of the Ist International Conference on Multiagent Systems, San Francisco, CA, USA.
AAAL

Reinhartz-Berger, 1., Sturm, A., and Wand, Y. (2013). Comparing functionality of soft-
ware systems: An ontological approach. Data & Knowledge Engineering, 87:320-338.

Ruy, F. B., Falbo, R. d. A., Barcellos, M. P., Costa, S. D., and Guizzardi, G. (2016).
SEON: A Software Engineering Ontology Network. In Proc. of the 20th International
Conference on Knowledge Engineering and Knowledge Management, pages 527-542.
Springer.

Sawyer, P., Bencomo, N., Whittle, J., Letier, E., and Finkelstein, A. (2010).
Requirements-Aware Systems: A research agenda for RE for self-adaptive systems.
In Proc. of the 18th IEEE International Requirements Engineering Conference, pages
95-103. IEEE.

Soares, M., Vilela, J., Guedes, G., Silva, C., and Castro, J. (2016). Core Ontology to
Aid the Goal Oriented Specification for Self-Adaptive Systems. In New Advances in
Information Systems and Technologies, pages 609—618. Springer.

Souza, V. E. S. (2012). Requirements-based Software System Adaptation. PhD thesis,
University of Trento, Italy.

Souza, V. E. S., Lapouchnian, A., Robinson, W. N., and Mylopoulos, J. (2011). Awareness
Requirements for Adaptive Systems. In Proc. of the 6th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, pages 60-69. ACM.

Souza, V. E. S. and Mylopoulos, J. (2011). From Awareness Requirements to Adaptive
Systems: a Control-Theoretic Approach. In Proc. of the 2nd International Workshop
on Requirements @Run.Time, pages 9-15. IEEE.

van Lamsweerde, A., Dardenne, A., Delcourt, B., and Dubisy, F. (1991). The KAOS
Project: Knowledge Acquisition in Automated Specification of Software. In Proc. of
the AAAI Spring Symposium Series, Stanford University, pages 59-62. AAAL

Whittle, J., Sawyer, P, Bencomo, N., Cheng, B. H. C., and Bruel, J.-M. (2010). RELAX:
a language to address uncertainty in self-adaptive systems requirement. Requirements
Engineering, 15(2):177-196.

Yang, Z., Li, Z., Jin, Z., and Chen, Y. (2014). A systematic literature review of require-
ments modeling and analysis for self-adaptive systems. In International Working Con-
ference on Requirements Engineering: Foundation for Software Quality, pages 55-71.
Springer.

Yu, E. S. K., Giorgini, P., Maiden, N., and Mylopoulos, J. (2011). Social Modeling for
Requirements Engineering. MIT Press, 1st edition.

