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Abstract. This article brings a comprehensive tutorial on radio-frequency (RF) 

positioning in Bluetooth and Ultra-Wideband (UWB) Wireless Personal Area Networks 

(WPANs), carrying out an extensive literature review, providing the reader an overview 

of Bluetooth and UWB RF positioning state-of-the-art. It also delves into some key 

issues, such as multilateration (MLAT) based solutions using received signal strength 

and time-of-arrival, multi-slope linear regression, RF fingerprinting and the use of 

clustering techniques to improve its localization accuracy, the interrelation between 

Bluetooth versions improvements and new positioning capabilities, as well as 

localization prospects in future UWB networks. 

1. Introduction 

Bluetooth has been around for more than 20 years now (Stallings, 2005). Initially 

devised to replace with wireless links the serial cables connecting peripherals to 

computers or mobile phones, Bluetooth has evolved to support low-power short-range 

communications between a variety of mobile devices, from laptops and smartphones to 

earphones and body sensors. Its latest version(Bluetooth 4.0), with its focus on very low 

power consumption(thereby greatly improving battery lifetime) and reduced connection 

delay, made Bluetooth technology particularly well suited for indoor positioning in 

WPANs. 

UWB is an emerging technology that offers unique advantages, as a large 

bandwidth and a very high time-domain resolution. The latter feature allows the 

application of parameters such as the channel impulse response(CIR) to locate the 

mobile station(MS). The use of CIR, at least theoretically, turns multi-path propagation 

and non-line-of-sight(NLOS) conditions - both serious impairments to RF positioning in 

other networks - into an additional information for accurate RF localization. UWB 

transmissions, due to strict power limits (FCC, 2002), have limited range, being an 

option for high accuracy WPAN positioning (Lau, 2011). 

This article is organized as follows: first, the basics of the Bluetooth technology 

are presented in Section 2; Section 3 brings a literature review of positioning solutions 

proposed for Bluetooth networks; Section 4 introduces the fundamentals of UWB 

technology. Finally, Section 5 presents a literature review of localization techniques in 

UWB networks. 

2. Bluetooth Networks 

Bluetooth began as a low-power short-range wireless technology to replace 

cables between desktop computers and its peripherals, such as keyboard and mouse. 



Therefore, at its original conception back in 1994
1
, it was designed to replace serial 

RS-232 cables. Since then, it has greatly evolved, being incorporated into a vast number 

of devices, such as laptops, smartphones, watches, among others. The Bluetooth 

specifications are written and maintained by the Bluetooth Special Interest Group (SIG), 

and include radio protocols and profiles2. Bluetooth is an open and royalty-free 

standard, which is one of the reasons why it is the de facto standard for communication 

in WPANs. 

A Bluetooth WPAN is called a piconet, and comprises a master device and up to 

seven active slave devices. A piconethas a star logical topology, so all transmission must 

be relayed by the master - slave devices cannot communicate directly, except during the 

discovery phase, when a Bluetooth device send inquiries to find nearby Bluetooth 

devices. Bluetooth transmissions use the 2.402 - 2.480 GHz band, which is within the 

Industrial, Scientific and Medical(ISM) 2.4 GHz unlicensed band. To reduce co-channel 

interference and interference from external sources(such as WiFi, which also uses the 

2.4 GHz ISM band), Bluetooth uses Frequency Hopping Spread Spectrum (FHSS) with 

79 1-MHz channels and Time Division Multiplexing(TDM) with 625sec time slots. 

The master defines the piconet synchronization clock (using its own internal clock) and 

the frequency hopping sequence (FHS) that is going to be used by all devices in the 

piconet, as well as the channel allocation for the slave devices. Transmissions hop from 

one frequency to another every time slot. Frames might span up to 5 time slots. The 

Bluetooth core version 1.0 uses Gaussian Frequency-Shift Keying Modulation (GFSK), 

with data rates of up to 721 kbps.  

2.1. Bluetooth Power Classes 

Bluetooth devices can be classified into three power classes, as listed in Table1. The 

power levels are specified at the antenna connector of the Bluetooth device. If the 

device does not have a connector, a reference antenna with 0 dBi gain is assumed. Class 

1 devices shall implement power control, with step sizes ranging from 2 to 8 dB, being 

able to control their output power from 100 mW down to 2.5 mW. Between 2.5 mW and 

1 mW, output power control is not used(Bluetooth Special Interest Group, 2015).  

Table 1 - Bluetooth Power Classes 

Power  

Class 

Max. 

Output 

Power 

Min. 

Output 

Power 

1 100 mW 1 mW 

2 2.5 mW 0.25 mW 

3 1 N/A 

2.2. Bluetooth Protocol Architecture 

The Bluetooth architecture has three key elements: the profiles, the host and the 

controller. The profiles specify communication interfaces for Bluetooth compatible 

                                                 
1 JaapHaartsen, an Ericsson Engineer, in cooperation with Sven Mattison, designed the original Bluetooth 

specification. This wireless technology was named after the tenth-century King Harold Blatand - i.e., Harald Blue 

Tooth - who ruled over Denmark and Norway after uniting the Scandinavian tribes into a single kingdom, the same 

way Bluetooth unites several protocols and devices into a WPAN. 
2 A profile is a set of protocols components required for the correct set up of communicating applications. 



devices. Some examples of Bluetooth profiles are the cordless telephone profile (CTP) 

-which enables cellular phones to communicate with computers, acting as cordless 

phones - headset, dial-up networking profile(emulates a modem over a cellular phone) 

and file transfer profile (with the same functions of the file transfer protocol over 

Internet protocol) (Labiod et al, 2007). The host is the hardware/software that supports 

those profiles and that interfaces with the controller. The controller implements the Link 

Manager Protocol (LMP) and comprises the Bluetooth baseband processor(which 

provides services such as error correcting, hop sequence selection and security) and 

radio(that carries out modulation, demodulation, power control, among other functions). 

The host-controller interface(HCI) is the command interface to the Bluetooth controller 

- also referred to as Bluetooth module - and allows access to hardware status and control 

registers. 

Figure 1 shows the Bluetooth protocol stack. TCS (Telephone Control Protocol 

Specification) provides telephony services. SDP (Service Discovery Protocol) allows 

Bluetooth devices to find out the services supported by other Bluetooth devices. OBEX 

(Object Exchange) is a data communication protocol. RFCOMM emulates an RS-232 

serial interface. L2CAP (Logical Link Control and Adaptation Protocol) multiplexes 

data received from upper layers and adapts packet sizes between layers. The HCI allows 

exchanges between the host and the Bluetooth module. The LMP controls and 

configures links to other devices. The Baseband controls the physical link over the 

Bluetooth radio. 

 

 

Figure 1 - Bluetooth Protocol Stack 

2.3. Bluetooth Evolution Path 

Since 1999, when version 1.0 was issued, Bluetooth SIG has adopted several 

enhancements to the core specification(which serves as a uniform structure for devices 

interoperability), as listed in Table2. 

Core version 1.2 introduced Adaptive Frequency Hopping(AFH), which aims at 

reducing interference in Bluetooth transmissions due to the shared use of the unlicensed 

2.4 GHz ISM band with other technologies, such as WiFi. The key idea is to identify 

``bad'' channels and remove them from the hopping list. The channel assessment - i.e., 

the process of identifying the channels with high levels of interference(the ``bad'' 

channels) - is not defined in the SIG specification, so it is up to the Bluetooth device 

manufactures to select which parameter(s) to use in the assessment. The most commons 

are RSS and Packet Error Rate (PER): channels with high RSS levels and/or high PER 



are removed from the hopping list. However, according the SIG specification, the FHS 

must have at least 20 channels.  

Table 2 - Milestones in the Bluetooth Evolution Path. 

Core 

Version 

Issue 

Year 

Major Improvements 

1.0 1999 - 

1.2 2003 Adaptive frequency hopping, 

Inquiry-based RSSI 

2.0 2004 2.1 Mbps peak data rates 

2.1 2007 3.0 Mbps peak data rates 

3.0 2009 24 Mbps peak data rates 

4.0 2010 Lower Energy Consumption, 

Broadcasting,Lower connection latency 

Prior to version 1.2, the obtaining of Received Signal Strength (RSS) in 

Bluetooth had two relevant limitations (Wamg et al, 2013): 

1) to obtain the RSS indicator (RSSI) of an anchor device, the target device had to 

connect to it (connection-based RSSI). This introduced a delay that could render 

triangulation-based or fingerprinting location methods unusable, particularly for 

moving targets. In a 2003 study, the delay to get the RSS of a single node was 10.5 

seconds - 5.3 seconds for the device discovery plus 5.2 seconds to connect to the 

device (Hallberg et al, 2003). The total delay exceeded 15.4 seconds with only two 

nodes. The longest delay to obtain a position fix reached 31.3 seconds using five 

anchor nodes. After this interval, a person carrying a target Bluetooth device and 

walking at a regular speed of 1.2 meters/second would be 38 meters away from the 

location where the position request was initiated;  

2) the connection-based RSSI was defined as follows: if the received power was 

within the Golden Receive Power Range (GRPR) - a 20 dB wide interval that is 

assumed as the ideal received power range - the RSSI value was set to 0 dB 

(Bluetooth Special Interest Group, 1999). Within this interval, the RSSI was 

constant;therefore, no relationship could be established between received power 

and distance, for ranging and localization purposes. Out of the GRPR interval, the 

RSSI was reported in dB above (positive values) the GRPR upper limit, or 

below(negative values) the GRPR lower limit. Another problem was that the GRPR 

lower limit was defined as a function of the receiver sensitivity
3
, so this parameter 

was device specific (Bekkelien, 2012). 

Core version 1.2 addressed the two aforementioned limitations, by introducing a 

new HCI command called INQUIRY_WITH_RSSI, which allowed including the RSSI 

in inquiry responses during the discovery phase(Bluetooth Special Interest Group, 2003). 

Inquiry-based RSSI made it possible to obtain the RSSI without the need to connect to 

another device, which reduced delay and overhead. Besides that, inquiry-based RSSI, 

unlike connection-based RSSI, was not defined in relation to the GRPR lower and upper 

limits, so the RSS could be reported in dBm, allowing the use of this parameter for 

ranging and triangulation-based positioning.  

                                                 
3 In the Bluetooth core specification, the receiver sensitivity is defined as the received power level for which the Bit 

Error Rate(BER) is equal to 0.001. 



Core version 2.0 came along with Enhanced Data Rates(EDR), which achieved 

peak data rates of 2.1 Mbps using Differential Quadrature Phase-Shift Keying(DQPSK) 

modulation. This rate is almost three times higher than the previous version maximum 

throughput of 721 kbps using GFSK. Core version 2.1 achieved up to 3 Mbps using 

8-DPSK(Differential Phase-Shift Keying) (Labiod et al, 2007). Bluetooth controllers 

compliant with core version 3.0+HS(High Speed) incorporate a WiFi device, reaching 

up to 24 Mbps over WiFi links(Bluetooth Special Interest Group, 2009).  

Core version 4.0 - also referred to as Bluetooth Low Energy(BLE) - brings 

important improvements to Classical Bluetooth(the previous versions), mostly in energy 

consumption optimization and faster connections. BLE implements features such as 

smart host control and adjustable message length to reduce average, peak and idle mode 

power consumption down to 20 times, in relation to Classical Bluetooth, allowing BLE 

devices with small batteries to operate for a year or more (LitePoint, 2012). The smart 

host control places much more intelligence on the Bluetooth controller, enabling the 

host to sleep longer periods, being woken up by the controller only when some action 

needs to be performed.  This saves energy in comparison to Classical Bluetooth, where 

the host usually consumes more power than the controller does. Adjustable message 

length feature also saves energy, by encapsulating messages into longer packets - fewer 

packets equals less overhead, reducing power consumption by the Bluetooth radio. BLE 

achieves faster connections by using advertising mode, when the Bluetooth device sends 

broadcast messages that speed up nearby devices discovery, pairing and connection 

(Cinefra, 2013). BLE, unlike previous versions, is not backward compatible. For this 

reason, the single mode devices - that support only BLE - cannot communicate with 

Classical Bluetooth devices. Dual mode devices support both technologies, at the cost of 

lower battery lifetime. 

3. Positioning in Bluetooth Networks 

The ubiquity of Bluetooth devices - laptops, smartphones, among others - coupled with 

the low cost and long battery lifetime of Bluetooth modules(particularly with the advent 

of BLE), makes Bluetooth networks a promising alternative for RF positioning, 

especially in indoor environments. Similar to WiFi localization research, the focus in 

Bluetooth positioning is placed in the evaluation of solutions that rely only on the 

pre-existing network infrastructure, i.e., that do not require any additional hardware to 

operate. This enables a rapid and cheap deployment of the location system, increasing 

its acceptability
4
. 

Initially, the Bluetooth signal parameters available for localization purposes are 

the Link Quality Indicator (LQI)
5

, the Transmitted Power Level (TPL)
6

, the 

connection-based RSSI and the inquiry-based RSSI. However, the best option, 

presenting a more predictable relationship with TX-RX distance, is the inquiry-based 

RSSI(available from core version 1.2 onwards), which is expressed in absolute values 

(dBm instead of dB) and is not subject to variations due to power control(as the 

                                                 
4
The acceptability can be defined as the location system's ability to be smoothly integrated with pre-existing network 

infrastructure (Bandara et al, 2004). 
5 The LQI is a 8-bit unsigned integer - defined as a function of the BER - that expresses the perceived link quality at 

the receiver. The conversion from BER to LQI is device-specific. 
6
Power control might be used in Bluetooth connected state to reduce interference with other Bluetooth modules and 

to improve battery lifetime. As it is used only in connected state, inquiry-based RSSI is not affected by it. 



connection-based RSSI and TPL). LQI is related to the BER, but the conversion from 

BER to LQI is device/manufacturer specific. Besides that, the LQI is subject to 

variations due to channel conditions, such as interference, and as a result is not a viable 

alternative for ranging and positioning (Hossain and Soh, 2007). Connection-based 

RSSI is constant(0 dB) - and thereby independent of the TX-RX distance (Hallberg et al, 

2003) - when the received power lies within the GRPR, which effectively also excludes 

it as a feasible choice for ranging and localization. For example, assuming a path-loss 

slope n=3(a typical value for 2.4 GHz RF propagation at indoor environments), a 

Bluetooth device would report the same connection-based RSSI at 1 meter and 5 meters 

from the Bluetooth beacon. However, Bandara developed a positioning system in 

Bluetooth 1.1 using connection-based RSSI and installing variable attenuators at the 

Bluetooth beacons(Bandara et al, 2004). The additional loss introduced by the 

attenuators would then shift the received power to a level below the GRPR, where the 

RSSI would be linearly related to the received power(and for that reason could be used 

as a distance estimator for MLAT). A single beacon with variable attenuators and four 

antennas - placed at the corners of a 4.5 x 5.5 m
2
 room - was deployed, and 92% of the 

test samples achieved location errors of 2 meters or less. Nevertheless, the proposed 

system requires the installation of additional hardware, which would be costly and 

time-consuming in a large-scale location system - for example, in a whole building - 

reducing the system's acceptability
7
. 

Most features related to MS position location in WiFi networks are also 

applicable to Bluetooth positioning: it is more relevant in indoor environments
8
; 

round-trip-time(RTT) estimates are not available(which excludes time-of-arrival based 

MLAT as a possible location technique); the Bluetooth beacon antennas are 

omnidirectional, ruling out angle-of-arrival based triangulation, unless additional 

hardware is deployed(i.e., directional antennas). The proposed solutions for Bluetooth 

localization rely mostly on RSS-based MLAT(Wamg et al, 2013; Hallberg et al, 2003; 

Cinefra, 2013; Fernandez et al, 2007; Chen et al, 2014), fingerprinting (Bandara et 

al,2004; Zhang et al, 2013; Disha and Khilary, 2013), or on a combination of both 

(Subhan et al, 2011; Subhan et al, 2013)
9
. In Bluetooth positioning, unlike in WiFi 

networks, there are many MLAT based location solutions. This happens because, due to 

the shorter range of Bluetooth beacons, this technique is being used mostly to locate 

devices within each room. In that case, with the absence of obstacles such as walls 

along the propagation path, it is easier to model the path-loss using empirical models, 

allowing the use of RSS-based MLAT with good results. Proximity (i.e., returning as the 

MS position estimate the coordinates of the nearest Bluetooth beacon) and centroid 

methods are also used (Wamg et al, 2013). 

3.1. RSS-based MLAT solutions 

There is a vast amount of published papers on Bluetooth positioning using RSS-based 

                                                 
7
Nevertheless, prior to core version 1.2, it would probably be the best option for Bluetooth positioning. 

8
In fact, it seems to be exclusively used for indoor localization, which is quite reasonable, if one considers the very 

limited range of Bluetooth devices(with the exception of Class 1 devices), if compared to the range of WiFi access 

points. 
 
9
Agrawalprovided a brief Bluetooth positioning taxonomy that includes some other less commonly used techniques - 

such as Fuzzy Logic (Agrawal et al, 2014). 



MLAT, such as (Wamg et al, 2013; Hallberg et al, 2003; Cinefra, 2013; Fernandez et al, 

2007; Chen et al, 2014). In all of them, the following requisites are fulfilled:  

1) the target MS is within range of at least three reference nodes;  

2) there is a mathematical model describing path-loss as a function of distance; 

3) there is an algorithm to solve the resulting overdetermined non-linear equation 

system. This section is devoted to studying in detail two implementations with 

special features: real-time calibration (Fernandez et al, 2007) and ranging with a 

two-slope model(Chen et al, 2014). 

3.1.1. Real-time calibration 

Fernandez proposed a system using real-time calibration of the path-loss to distance 

mapping(Fernandez et al, 2007). This scheme is able to perceive the effect of 

environmental changes that affect RF propagation (such as humidity, temperature, 

presence of people, change of furniture location, closing and opening of doors, among 

others), therefore improving localization accuracy. Besides using the RSS between the 

target and the reference nodes (Bluetooth beacons placed at known coordinates) to 

achieve a positioning fix - as in any other MLAT system - the solution proposed by 

Fernandez also employs the RSS between the anchor nodes to obtain calibration factors 

- called translation (from path-loss to distance) factors(Fernandez, 2007). These factors 

are then applied to the path-loss between the target and anchor nodes to yield distance 

estimates that will be used in the MLAT position fix. Consider a set of N Bluetooth 

beacons placed at known locations. This yields a pairwise distances matrix D = 

[dij]NxN,where di,j is the Euclidean distance between anchor nodes i and j. Assuming 

that all beacons have a known constant output power
10

 Pt, the path-loss between the 

anchor nodes can be calculated, subtracting (in the logarithmic scale) the RSS values 

from Pt. Then, a path-loss matrix S = [si,j]NxNis obtained, where si,j is the path-loss 

between nodes i and j
11

. A matrix of translation factors =[i,j], also referred to as 

dynamic mapping matrix, is given by: 

 
1ΦSD  (1) 

 

wherei,j is the factor that translates the path-loss si,j between nodes i and j into their 

pairwise distance di,j. As  is expressed as a function of the path-loss, it reflects the 

variations in the propagation conditions, acting as a set of calibration factors in the 

MLAT process. With calibration, the estimated distances between the target node and 

the N Bluetooth beacons at any given moment are provided by vector  

 

sd ˆ
   (2) 

 

wheres is a N-element vector containing the RSS values from the N anchor nodes, 

measured at the target device location. The following non-linear system is then 

                                                 
10

This is a reasonable assumption, as the proposed system uses inquire-based RSSI values, and replies to inquiries 

during the discovery phase are not subjected to power control. 
11

Note that both matrices D and S are symmetric and that the elements of their main diagonals are zero. 
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where (xi,yi) are the coordinates of the ith beacon and id̂ is the estimated distance 

between the target node and the ith beacon. Due to NLOS conditions and/or inherent 

limitations in the RSS measurement and reporting, this quadratic equation system has 

no closed-form solution. Fernandez (Fernandez et al, 2007) used a gradient descent 

method (Allison, 2001) to find iteratively the position estimate  ŷ,x̂ that minimizes the 

following sum: 

 

 𝑥 , 𝑦  = 𝑎𝑟𝑔 𝑚𝑖𝑛     (𝑥 − 𝑥𝑖)
2 + (𝑦 − 𝑦𝑖)

2 − 𝑑𝑖 
2

𝑁
𝑖=1  (4) 

 

To evaluate the location system, the authors deployed a testbed in a 5 x 10m
2
 

room, with four Bluetooth 2.0 beacons. Two test positions were selected: the first was at 

the room center, and the second close to one of the beacons. Table 3summarizes results 

at the two test locations, with and without calibration for two window lengths
12

. When 

no calibration is used, the target node estimated location is given by a weighted centroid 

method. At the first test location, the use of calibration increased accuracy by 40% for 

the smaller window length. At the second test location, it achieved an accuracy 

improvement higher than 50%for both window lengths. 

Table 3 - Positioning errors in centimeters (Fernandez et al, 2007), with 

and without dynamic calibration. 

Test Window

Lengt 

(sec) 

WithoutCali

bration 

WithCali

br. 

1 30 115.4 69.7 

1 60 100.9 73.2 

2 30 110.4 49.7 

2 60 108.5 51.0 

3.1.2. Ranging with a Two-Slope Model 

Empirical propagation models can be used to express the received power as a function 

of TX-RX distance, as the one defined by 

 











0

100 log10)()(
d

d
ndPdP (5) 

 

where P(d) is the RSS (in dBm) at d meters from the transmitter, d0 is a reference 

                                                 
12 The window length or integration interval is the time along which RSS samples are collected and averaged. 



distance(in meters), n is the path loss exponent or slope. Assuming d0=1 meter, one has 

 

 ddP 10log)(   (6) 

 

whereβ - also referred to as the offset - is the RSS at the reference distance and =-10n 

is the path-loss slope in dB/decade. Calibration campaigns are required to fine-tune such 

models before they can be applied to a specific environment. During these campaigns, 

at each selected measurement point, the distance d and the average RSS value are 

registered. Then, linear regression can be used to estimate parameters βand.However, 

propagation characteristics might differ in regions close to and far from the transmitter. 

In such cases, the use of a single offset-slope pair will result in path-loss prediction 

errors that will escalate with distance. This will ultimately result in larger ranging errors 

and consequently in lower positioning accuracy for MSs in the far region. To minimize 

that, a breaking point might be identified, separating the near and far regions, and linear 

regression might be applied to each region to estimate different model parameters. The 

two-slope model is then given by 

 

𝑃 𝑑 =  
𝛽1 + 𝛾1 log10(𝑑) , 𝑑 < 𝑑𝑏𝑟𝑒𝑎𝑘

𝛽2 + 𝛾2 log10  
𝑑

𝑑𝑏𝑟𝑒𝑎𝑘
 , 𝑑 ≥ 𝑑𝑏𝑟𝑒𝑎𝑘

 (7) 

 

where (β1,1) and (β2,2) are the offset-slope pairs in the near and far regions, 

respectively, and dbreak is the break point distance(in meters) in relation to the transmitter. 

Multi-slope linear regression has been originally used for path-loss predictions in urban 

microcells (Iskander and Yun, 2002), but its use can be extended to indoor environments. 

It is applied by Chen(Chen et al, 2014), after the collected RSS values(during the 

calibration or training phase) at each point are Gaussian-filtered and then averaged. The 

break-point - also referred to as critical point - is empirically defined. Offset-slope pairs 

are obtained for each Bluetooth beacon in the test bed. In the test phase, Chen used a 

moving average filter to smooth abrupt variations in received RSS, before ranging(Chen 

et al, 2014). The ranges obtained using the aforementioned two-slope model result in a 

non-linear equation system. Taylor series first-order expansion is used to linearize the 

system. In an experiment with four Bluetooth beacons, 80% of the test samples 

achieved a position error lower than 1.5 meters.  

By comparing Figures 2c and 2d, it is possible to confirm that the use of the 

optimum two-slope model - illustrated in Figure 2b - results in a significant reduction of 

the ranging error(diminishing its average by more than 60% in that particular example), 

which has a direct impact on MLAT positioning accuracy. Though such improvement 

might not be attainable in all scenarios, it proves that a two-slope model can provide a 

better RSS to distance mapping in some environments. 

 



 

Figure 2 - (a) Linear regression without a break-point; (b) Two-slope 

linear regression, with a break-point at 14 meters from the transmitter; (c) 

Ranging errors when using single slope regression; (d) Ranging errors 

when using two-slope regression. 

 

3.2. Fingerprinting-based solutions 

Unlike in cellular and UWB networks, RF fingerprinting in Bluetooth(as in WiFi) is 

restricted to using only RSS values. RF fingerprinting techniques for WiFi and Wireless 

Sensor Networks (WSNs) indoor localization can be extended to Bluetooth 

networks
13

.Besides that, most papers on Bluetooth positioning use RSS based MLAT, as, 

due to the limited range of Bluetooth beacons and devices, MLATis being used mostly 

to locate devices within each room. For this reason, there are fewer papers on Bluetooth 

fingerprinting, with no significant new features. For that reason, this sectioncovers in 

detail two special features applied to RF fingerprinting: pattern matching using signal 

strength difference (Hossain et al, 2013) and search space reduction using K-means 

clustering. 

3.2.1. Pattern Matching using Signal Strength Difference 

Manufacturing variations among Bluetooth devices might affect the way they measure 

RSS values. As a result, at a given location and time, different devices might measure 

distinct RSS values for the same Bluetooth beacon. For this reason, if the radio map14is 

built from field measurements using a certain Bluetooth device, and another Bluetooth 

device is to be localized, then the fingerprinting location accuracy using this radio map 

may deteriorate. This is called the cross-device effect (Chen et al, 2006). To mitigate it, 

instead of employing absolute RSS values in the correlation function, one might use 

relative RSS values, i.e., their ranking or their signal strength differences(SSDs).  

While absolute RSS values of a set of Bluetooth beacons might be quite 

                                                 
13 In fact, with BLE and its emphasis on low energy consumption and enhanced battery lifetime, Bluetooth 

positioning might be treated in a very similar way as in ZigBee WSNs. 
14 The radio map, also referred to as the Correlation Database(CDB), is the set of geo-referenced RF fingerprints 

collected(or generated via propagation simulations) during the off-line training phase of the fingerprinting algorithm. 



different when measured by distinct Bluetooth devices, their ranking or their SSDs are 

more likely to remain the same. The greater stability of those two techniques across 

devices derives from the assumption that the relationship between the input signal 

strength at the receiving antenna and the RSS reported by the Bluetooth device is a 

monotonically increasing function (Krumm et al, 2003). For better understanding, 

consider two Bluetooth devices, MS1 and MS2, both placed at the same location, and 

two Bluetooth beacons, A and B. The signals from these beacons reach both MS devices 

with strengths sA and sB, respectively. The RSS values informed by MS1 are RSS1A 

and RSS1B. The RSS values informed by MS2 are RSS2A and RSS2B. If the 

relationship between the input signal strength and the RSS is a monotonically increasing 

function, then, if sA>sB, RSS1A> RSS1B and RSS2A>RSS2B.  While the reported 

values (RSS1A,RSS1B) might be different from (RSS2A,RSS2B) , the ranking of A and 

B RSS values is the same on both MSs. Besides that, one can also assume that the SSD 

of the signals from beacons A and B will be the same on both devices (Hossain et al, 

2013), i.e., that (RSS1A-RSS1B)=(RSS2A-RSS2B).  

In ranking correlation the Spearman Rank Correlation coefficient (Mathworks, 

2010)is used to minimize the cross-device effect when comparing the target 

fingerprint(Tfing) with the reference fingerprint (Rfings). When using SSD for that 

same purpose, the Tfing becomes 

 

𝑇  𝑘 =  
𝑅𝑆𝑆1 − 𝑅𝑆𝑆𝑘

…
𝑅𝑆𝑆𝑁 − 𝑅𝑆𝑆𝑘

 (8) 

 

wherei≠k(k {1,...,N})
15

, N is the number of Bluetooth beacons and RSSi is the 

received signal strength from the ith beacon. The Rfingsare also built using Equation (8). 

As Example 1 shows, even though there are 
2)!2(N

N!


 possible pairs in a set of N 

beacons, there are only (N-1) independent SSD values. That is why the fingerprints 

dimension when using SSD is (N-1), if there are N beacons. The effect of this slightly 

smaller RF fingerprint dimension, in comparison to when absolute RSS values are used, 

becomes negligible for N>5(Kaemarungsiand Krishnamurthy, 2004). 

Example 1:Given 𝑆 =[-40 -55 -80 -45]
T
containing the absolute RSS values(in dBm) of 

four Bluetooth beacons measured by a Bluetooth mobile device at a single location, 

show that the resulting SSD RF fingerprints have only 3 independent SSD values. 

Solution:Table4 shows vector 𝑆  and the resulting SSD RF fingerprints. Note that 

vector𝑇𝑘
     , k = {1,…,4} is obtained subtracting the ith beacon RSS value from the RSS 

values of the remaining beacons. All fingerprints have only three non-null elements. 

Besides that, it is also possible to observe that  

 

𝑇  2 = 𝑇  1 +  𝑆 1 − 𝑆(2)  1 1 1 1 𝑇

𝑇  3 = 𝑇  1 +  𝑆 1 − 𝑆(3)  1 1 1 1 𝑇

𝑇  4 = 𝑇  1 +  𝑆 1 − 𝑆(4)  1 1 1 1 𝑇
 (9) 

                                                 
15 Parameter k identifies the beacon which is fixed, and whose RSS is subtracted from the RSS of the remaining 

beacons. 



 

where S(k) is the kth element of 𝑆 . This means that all other fingerprints can be 

obtained as a linear combination of the first one. Therefore, there are only 3 independent 

SSD values. Generalizing, if there are N beacons, then only (N-1) independent SSD 

values can be obtained. 

 

Table 4 - Vector of absolute RSS values(in dBm) and the resulting RF 

fingerprints using SSD (in dB). 

𝑆  𝑇1
     𝑇2

     𝑇3
     𝑇4

     
-40 0 15 40 5 

-55 -15 0 25 -10 

-80 -40 -25 0 -35 

-45 -5 10 35 0 

 

Hossain deployed a Bluetooth testbed in a laboratory spanning an area of 214 m
2
, with 4 

fixed Bluetooth beacons and 337 training locations(Hossain et al, 2013). There, they 

reported a 3.4-meter average location error when using K-Nearest Neighbors (KNN) 

with absolute RSS values. The average error dropped to 2.6 meters when KNN was 

used with SSD. 

3.2.2. Search Space Reduction using K-means Clustering 

Search space reduction aims at reducing the time to produce a position fix in RF 

fingerprinting, by limiting the Rfings stored in the radio map - or Correlation 

Database(CDB) - that will be compared with the Tfing. It is crucial when the radio map 

is too large - which is the case for location systems in metropolitan areas (Campos and 

Lovisolo, 2009) or even in large multi-floor buildings (Campos et al, 2014). In 

MS-based Bluetooth indoor fingerprinting, search space reduction might also help 

reduce energy consumption - both of the MSs and, most importantly, of the fixed 

beacons - which is in keeping with one of the key features of BLE - i.e., enhancing 

battery lifetime. Besides CDB filtering, another alternative for search space reduction is 

K-means (Marsland, 2009), which is an unsupervised clustering technique
16

. With 

clustering, the positioning fix is carried out in two phases:  

1) the Tfing is presented to the trained classifier, which identifies the cluster that the 

Tfing belongs to;  

2) theTfing is compared only to the Rfings belonging to the selected cluster. The 

selected cluster - i.e., the reduced search space - is the one whose center is the 

closest(in the n-dimensional RSS space)to the Tfing.  

During the offline training phase, first the number of clusters Nc must be defined 

and initial values must be assigned to the Nc clusters centers. Then, the following steps 

are taken:  

1) the distances between each Rfing and each cluster center are calculated; 

2) each Rfing is associated with the cluster whose center is the closest one; 

3) at the end of each epoch the clusters centers are re-calculated, using the arithmetic 

                                                 
16

Disha and Khilary reported a median positioning error below 2 meters in a Bluetooth indoor test bed using RF 

fingerprinting with K-means(Disha and Khilary, 2013).  



mean of the Rfings of each cluster
17

; 

4) the distances between each Rfing and the new clusters centers are calculated; if any 

Rfing switches clusters, then steps 1 to 3 are repeated; otherwise, the process ends, 

yielding the clusters centers vectors. 

4. UWB NETWORKS 

UWB transmissions occupy large bandwidths and have very strict output power limits. 

As a result, they are best suited to high-speed short-range communications. These 

features, coupled with their very high time-domain resolution, make UWB a promising 

alternative for high accuracy indoor WPAN positioning. UWB signals might be 

generated using very short time-domain pulses(from 10 to 1000picoseconds), that 

occupy large bandwidths(from hundreds MHz to several GHz) in the frequency domain. 

This is called single-band UWB, also referred to as impulse radio UWB(IR-UWB). 

Another alternative to generate UWB signals is to divide the available UWB band into a 

number of non-overlapping channels
18

. Transmissions are made simultaneously over 

multiple carriers into those non-overlapping channels. This is called multi-band UWB, 

also referred to as multi-band orthogonal frequency division multiplexing(MB-OFDM) 

UWB (Lau, 2011). Each symbolis transmitted over several pulses(in IR-UWB) or over 

several non-overlapping channels(in MB-OFDM UWB). UWB transmissions have a 

low power spectral density and are spread over wide bandwidths, and do overlap with 

frequency bands occupied by other services. This latter characteristic arose the concerns 

of several segments of the telecommunications industry, afraid that the cumulative 

effect of UWB signals(aggregated power) could cause harmful interference to 

pre-existing systems, by raising the background noise
19

. As a result, regulatory bodies, 

such as the Federal Communications Commission(FCC) in the USA, issued 

specifications for UWB systems operation.  

4.1. Definition of UWB Technology 

The classification of a communications system into narrowband, wideband or 

ultra-wideband, shown in Table5 (Lau, 2011)is based on the fractional bandwidth Bf, 

which is given by 

  

𝐵𝑓 = 2  
𝑓𝐻−𝑓𝐿

𝑓𝐻+𝑓𝐿
 (10) 

 

wherefH and fL are the upper and lower 10 dB points, respectively(i.e., those are the 

frequencies at which the output power is 10% of the maximum output power, which 

occurs at frequency fM, where fL<fM<fH). Any system with Bf 20% or that occupies a 

bandwidth larger than 500 MHz (the bandwidth is given by (fH-fL)) is classified as a 

                                                 
17 At this point, another unsupervised clustering method called K-medians, instead of the arithmetic mean, uses the 

median. The advantage of using the median is that it is a more robust estimator, less susceptible to outliers, i.e., input 

vectors with much noise (Marsland, 2009). All other steps are equal for both K-medians and K-means. 
18

MB-OFDM splits the UWB spectrum into 528-MHz wide bands. Each 528 MHz band comprises 128 carriers 

modulated using Quadrature Phase-Shift Keying(QPSK) on Orthogonal Frequency Division Multiplexing(OFDM) 

tones (Matin, 2010). 
 
19 UWB signals are noise-like, due to their very large bandwidth and their very low power spectral density. For that 

reason, depending on the attitude of regulatory bodies, license-free operation of UWB systems could be allowed 

(Oppermann, 2006). 



UWB system (Oppermann, 2006). 

Table 5 - System type classification as a function of Bf 

System  

Type 

Fractional 

Bandwidth 

Narrowband Bf< 1% 

Wideband 1%  Bf< 20% 

Ultra-wideband Bf  20% 

4.2. Overview of FCC UWB Regulations 

The FCC issued the UWB First Report and Order in February 2002(FCC, 2002). It 

authorized three classes of UWB systems:  

1) imaging systems(such as through the wall imaging, ground penetrating radar and 

medical imaging systems);  

2) vehicular radar systems;  

3) communication and measurement systems(among which RF positioning is 

included).  

These regulationsdefine, among other parameters, the frequency bands and the 

emission limits for UWB systems. Initially, the band allocated for UWB is 7.5-GHz 

wide, between 3.1-10.6 GHz (Oppermann, 2006). At that band, the maximum output 

power for indoor applications is 0.5 mW, which corresponds to a power spectral density 

of approximately -41.3 mW/MHz. For outdoor applications in that band, such as 

vehicular radar, the maximum power spectral density is 10 dB lower. Table6summarizes 

the emission limits(expressed as power spectral densities in dBm/MHz) for the 

authorized UWB systems in different frequency bands (Breed, 2005). 

Table 6 - FCC UWB emission limits (dBm/MHz) 

 

Application 

Frequency Band (GHz) 
0.96-1.61 1.61-1.99 1.99-3.1 3.1-10.6 > 10.6 

Ground Penetrating Radar -65.3 -53.3 -51.3 -41.3 -51.3 

Surveillance Systems -53.3 -51.3 -41.3 -41.3 -51.3 
Medical Imaging Systems -65.3 -53.3 -51.3 -41.3 -51.3 
Indoor Comm. Systems -75.3 -53.3 -51.3 -41.3 -51.3 
Vehicular Radar Systems -75.3 -61.3 -41.3 -51.3 -61.3 

4.3. IEEE Task and Study Groups related to UWB 

The Institute of Electrical and Electronics Engineers(IEEE) created in May 1999 the 

IEEE 802.15 WPAN Working Group, which aims to provide standards for 

low-complexity and low-power consumption wireless connectivity. Within this work 

group, the following currently active(as of January 2015) task and study groups are 

related to UWB: 

 IEEE 802.15 TG3d(Task Group 3d 100 Gbit/s Wireless): its objective is to 

increase the data transfer speeds of 802.15.3 standard for imaging and 

multimedia applications, reaching data rates of up to 100 Gbps; 

 IEEE 802.15 TG4r(Task Group 4r Distance Measurement Techniques): its 

objective is to provide communications and high precision ranging/location 

capability; 

 IEEE 802.15 SG3c(Study Group 3e Close Proximity High-Data Rate systems): 

its objective is to explore the use of the 60 GHz band for WPANs; 



 

Besides IEEE 802.15, another working group of interest to UWB is IEEE 802.19 

Wireless Coexistence Working Group, which develops and maintains policies 

addressing issues of coexistence with current standards and/or standards under 

development. Due to the very large bandwidth of UWB, and as UWB systems use 

frequency bands overlapping with other systems, several coexistence scenarios for 

UWB devices have been submitted to IEEE 802.19 (Politano, 2006). It is also worth 

mentioning that IEEE issued a specification, IEEE 802.15.4a, which expands the 

original IEEE 802.15.4(WPANs) to encompass UWB technologies as well. However, it 

has not been ratified yet.  

4.4. UWB versus Bluetooth 

UWB and Bluetooth can be seen as competing technologies for WPANs: both aim at 

low power consumption, enhanced battery lifetime and data communications over short 

distances. Bluetooth is already a well-established technology, with a well-defined 

protocol stack. UWB, on the other hand, is still an evolving technology, and its 

regulation is still not completely agreed upon. Besides that, several Medium Access 

Control(MAC) protocols have been proposed for UWB
20

, and there is still ongoing 

research on this topic. In fact, there are many open issues in UWB MAC especially in 

four areas: overhead reduction, multiple access, resource allocation, and quality of 

service(QoS) provisioning(Zin and Hope, 2010). However, on the long run, UWB is 

most likely to overcome Bluetooth for short-range communication applications, due to 

the much higher data rates it can achieve. For example, in UWB WPANs, data rates of 

up to 480 Mbps will allow high speed data transfer of multimedia content, an 

application not supported by BLE (Matin, 2010). 

5. POSITIONING IN UWB NETWORKS 

As in narrowband and wideband systems previously studied, localization in UWB 

networks can use geometric(i.e., triangulation techniques - circular and hyperbolic 

MLAT;multi-angulation) and RF fingerprinting. However, not all those methods can 

take full advantage of the UWB signals very high time-domain resolution. 

5.1. Geometric positioning 

5.1.1. Multi-angulation 

Angle-of-Arrival(AOA) positioning, also referred to as Direction of Arrival(DOA), 

requires the deployment of antenna arrays at the reference nodes, what increases the 

localization system infra-structure cost. Besides that - and maybe more importantly - 

AOA positioning accuracy is severely affected by multi-path and NLOS propagation 

conditions. As a result, AOA is not a viable alternative for practical deployments of 

UWB indoor localization systems (Yang, 2011). 

5.1.2. TOA-based MLAT 

Time-of-Arrival(TOA)-based MLAT, as in narrowband and wideband systems, is 

negatively affected by multi-path and NLOS conditions. However, high time-domain 

                                                 
20

Zin and Hope provided a summary of proposed UWB MAC protocols (Zin and Hope, 2010). 



resolution of UWB signals enable an accurate TOA estimation
21

. Aside from detecting 

the TOA as exactly as possible, it is also important to identify the channel conditions to 

improve circular MLAT accuracy. Three basic channel conditions have been 

categorized(Pahlavan et al, 1998): 

1) Dominant Direct Path(DDP), when the line-of-sight(LOS) component(the first 

received multi-path component) is the strongest;  

2) Non-Dominant Direct Path(NDDP), when there is a LOS component, but it is 

not the strongest;  

3) Undetected Direct Path(UDP), when there is no LOS component, i.e., the direct 

path between the transmitter and the receiver is obstructed.  

First, the channel condition must be identified, primarily to find out if there is a 

direct path(LOS). This first step is called NLOS detection. Second, if NLOS conditions 

have been verified in the first step, NLOS mitigation techniques should be 

applied.Schroederpresents several methods for NLOS detection(Schroeder, 2007). Lie 

and See analyze some alternatives for NLOS mitigation(Lie and See, 2011). All these 

measures help improving ranging(obtained from the TOA measurements), and, as a 

result, the positioning accuracy as well. The high time-domain resolution of UWB 

signals enhances the NLOS detection and mitigation capabilities of those algorithms. 

5.1.3. RSS-based MLAT 

RSS-based MLAT, even though a viable alternative for UWB localization, does not 

benefit from the UWB high time-domain resolution, resulting in positioning accuracies 

similar to those achieved by narrowband or wideband systems. For example, Amiot and 

Laaraiedhdeployed four UWB receivers at fixed locations in a 350 m
2
 floor in an office 

building(Amiot and Laaraiedh, 2013). A transmitter was moved along 302 positions 

selected within that floor, generating IR-UWB signals in the 3-7 GHz band, with an 

output power of 26 dBm. The RSS at each receiver, for each transmitting position, was 

registered, together with the TX-RX distance. Those values were used to calculate 

log-normal shadowing path-loss models for each receiver location, employing linear 

regression. The final position estimate was obtained in a two-step process: first, the 

room where the MS was located was identified using RSS-based fingerprinting; second, 

the MS location within the selected room was estimated using RSS-based MLAT. In the 

first step, a 98.7% room identification accuracy was reported. In the second step, a 

median positioning error of approximately 3 meters was achieved. 

5.2. RF Fingerprinting 

CIR-fingerprinting takes full advantage of the huge UWB bandwidth and yields high 

position accuracy. This method takes factors which impair positioning accuracy in 

narrowband and wideband systems - multi-path propagation and NLOS conditions - and 

turns it into an advantage to RF localization
22

. 

The CIR to the impulse transmitted by the ithanchor node, measured at the jth 

measurement point (i.e., at the jth reference point of the radio map), is given by 

 

                                                 
21Yang analyzes several algorithms for TOA estimation in UWB networks (Yang, 2011). 
22Some results show that CIR-fingerprinting location accuracy is higher in NLOS than in LOS conditions(Wasim and 

Ben, 2007). 



    𝒉𝑖,𝑗  𝑡 =  𝑎𝑖,𝑗 ,𝑘
𝑀
𝑘=1 𝛿(𝑡 − 𝜏𝑖,𝑗 ,𝑘)𝑒−𝑗𝜃𝑖,𝑗 ,𝑘 (11) 

 

where ai,j,k, i,j,k and i,j,k are the amplitude, phase and delay of the kth received 

multi-path component from the ith anchor node transmission, measured at the jth 

reference point
23

; M is the maximum number of resolved multi-path componentsand (t) 

denotes the impulse function. If at reference point j, less than M multi-path components 

are detected from the impulse transmitted by anchor node i, then zero-padding is used to 

complete vector hi,j, which will then have M elements, for any i=1,…,N and j=1,…,NR. 

Note that N is the number of anchor nodes and NR is the number of entries in the radio 

map. 

Equation (11) shows that, in multi-path propagation conditions, the receiver 

detects multiple delayed and attenuated copies of the transmitted impulse. By taking the 

CIR with respect to different anchor nodes at the same position j, it is possible to build 

an RF fingerprint given by  

 

𝐑𝑗 =  𝐡1,j 𝑡 … 𝐡N,j 𝑡  (12) 

 

Each element of the fingerprint is a M-element vector, so the CIR-based 

fingerprint is a M x N matrix. The CIR is expected to carry the multi-path information 

that is unique to each location.  

Assume that the target device measures the CIR to the N anchor nodes, yielding 

the target RF fingerprint given by 

 

𝐓 =  𝐡1 𝑡 … 𝐡j 𝑡                       (13) 

 

wherehi is the CIR with respect to the ith anchor node. The target node position estimate 

is provided by the coordinates of reference pointj, whose CIRs(stored in the reference 

fingerprint Rj) maximize the sum of the CIR cross-correlation coefficients, i.e 

 

𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥  𝐶𝑖,𝑗  
𝑁
𝑖=1 (14) 

 

wherejW, W={1,…,NR}
24

, NR is the number of georeferenced points in the radio map 

and Ci,j is the CIR cross-correlation coefficient between the target(T(i) = hi) and 

reference (Rj(i) = hi,j) CIRs with respect to the ith anchor node, given by 

 

𝐶𝑖 ,𝑗 =
𝐸 𝑚𝑛∗ −𝐸 𝑚 𝐸{𝑛∗}

  𝐸  𝑚 2 − 𝐸{𝑚} 2  𝐸  𝑛 2 − 𝐸{𝑛} 2 
(15) 

 

wherem=hi,j and n=hi; n* denotes the conjugate complex of n and E{.} denotes the 

expectation operator. To improve positioning accuracy, a form of KNN is used: instead 

of returning only the coordinates of the reference point identified by index j , that 

maximizes Equation (14), all reference points where the sum of the CIR 

                                                 
23 Each reference point, stored in the radio map or CDB, is georeferenced: there is a pair of coordinates (for planar 

positioning) associated with it. 
24 Note that W is simply the set of reference point indexes in the radio map. 



cross-correlation coefficients is greater than a threshold Cth are selected
25

. The target 

node position estimate is then given by the arithmetic mean of the coordinates of the 

selected reference points, or the position fix might return an ambiguity region, formed 

by the coordinates of the selected reference points.  

Wasim and Bencarried out indoor measurements in the FCC allocated UWB 

band(3.1-10.6 GHz)(Wasim and Ben, 2007). Some locations have been selected for the 

UWB impulse radio. Then, a set of measurement points was identified in the indoor 

testbed. For each transmitter location, at each measurement position, 1601 discrete 

frequency samples were taken over the 7.5-GHz wide band, and the Channel Transfer 

Function(CTF) was calculated(Sindi, 2013). The CIR was obtained calculating the 

Inverse Discrete Fourier Transform(IDFT) of the CTF. On average, the ambiguity 

regions returned by the position fixes had radiuses of approximately 2 cm. Nevertheless, 

such a high accuracy does not come without a price, as the training phase of 

CIR-fingerprinting is time consuming, complex(as it requires specific equipment, such 

as vector network analyzers) and the resulting radio map might be very large. For these 

reasons - that are of paramount importance, if one considers a practical implementation 

of such a positioning system - this method is more suited only to small-size indoor 

environments. 

6. SUMMARY 

This paper presented the fundamentals of Bluetooth and UWB positioning. A brief 

review of the Bluetooth core versions, along its evolution path, has been provided, 

highlighting the improvements in the Bluetooth specification that were relevant to RF 

positioning, such as inquiry-based RSSI. Two techniques to enhance RSS-based MLAT 

in Bluetooth networks have been studied: real-time calibration and ranging with 

two-slope models. Following, the basics of the UWB technology have been introduced: 

the types of UWB signals(IR-UWB and MB-OFDM UWB), the allocated frequency 

bands, the output power limitations, among other relevant information. Finally, the 

applicability in UWB networks of geometric and scene analysis localization techniques 

have been analyzed, and CIR-fingerprinting, which achieves average location errors 

around 2 centimeters, has been presented. 
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