
A Polynomial-time Regular Expressions Implementation *

Juan Pedro Alves Lopes , Maria Alice Silveira de Brito ,
Paulo Eustáquio Duarte Pinto

1IME/DICC, Universidade do Estado do Rio de Janeiro (UERJ)
Av. São Francisco Xavier, 524, Maracanã – 20550-013 – Rio de Janeiro – RJ

me@juanlopes.net, malice@ime.uerj.br, pauloedp@ime.uerj.br

Abstract. Regular expressions are a notation to define regular languages in
terms of simple composable operations. They are equivalent to finite automata
in expressive power. In practice, however, modern regular expressions imple-
mentations diverge from the original theory. Most changes are made to allow
greater expressive power. This convenience comes at the cost of making lan-
guage membership a harder problem than it could be. In many modern lan-
guages, the regex language membership is a NP-complete problem. Besides, the
way they are implemented sometimes causes expressions that could be processed
in linear time to take exponential time. This fact may be seen as a security risk
for many applications that use regular expressions. In this work, we suggest a
simple implementation (based on Thompson’s Construction Algorithm) that has
superior worst-case performance than many popular implementations. We also
introduce a notation for the automata created by this algorithm that makes the
adopted implementation easier to understand.

1. Introduction

Regular expressions are a common tool in most modern languages and development plat-
forms. Its use is widespread in the industry for many purposes, e.g. pattern recognition,
extraction of tokens for formal language parsing or even user input sanitization for secu-
rity purposes.

Its extensive use originates from a strong theoretical base in the finite automata
field, introduced in the 40’s by McCulloch and Pitts [Mcculloch and Pitts 1943] and for-
malized later by Kleene [Kleene 1956].

Regular expressions and finite automata share a close relationship. They are equiv-
alent in expressive power, and the conversion of the former to the latter is trivial. Ken
Thompson demonstrated this in his implementation in the late 60’s [Thompson 1968],
while developing the QED text editor. The same regular expressions were later ported to
the well known ed and grep, all part of the Unix operating system.

Since then, as the implementations evolved, many features have been added to
practical regular expressions that diverged from the original language theory. While
originally regular expressions strictly describes regular languages, the currently most
widespread implementation (PCRE) is able to recognize not only any context-free lan-
guage, but also some context sensitive ones [Popov 2012].

*This work is partially supported by FAPERJ

One of the most notable consequences of this evolution consists in the recog-
nition of language strings described by those expressions, a problem with linear solu-
tion originally, having exponential solutions in a large number of modern implementa-
tions, including several of the mostly used ones. Perhaps the most dangerous feature
in this regard are the backreferences, that makes membership a NP-complete problem
[Câmpeanu and Santean 2007]. However, even expressions that could be recognized with
finite automata, due to some particularities of implementation, may take exponential time
in the worst case [Cox 2007].

Languages like Python, Java and Ruby are widely used in industry, but their stan-
dard libraries implement vulnerable regular expressions. These implementations make
the use of regular expressions potentially unsafe in otherwise trivial situations. A mali-
cious user may be able to force the execution of an expression with exponential time to
perform a denial-of-service attack on a web server.

For example, allowing user input to be interpreted as regular expressions, a ma-
licious user could inject the expression (a|a)+b, which given its exponential complexity
in vulnerable implementations, would use 100% of CPU for a virtually infinite time if
matched against the string aaa...aaa. Such attacks may cause instability and unavailabil-
ity of the web service.

The prevention of this type of attack is often not trivial, as in the case of Java,
where commonly used methods, such as replaceAll and split – of the class String – are
implemented with regular expressions which are vulnerable to this kind of attack.

Even in cases where a malicious user does not have access to write regular expres-
sions, a programming error can leave the system vulnerable to DoS attacks. This problem
becomes critical with the frequent sharing of regexes in online repositories that contain
many vulnerable expressions [Kirrage et al. 2013, Weidman 2010].

This work has two main objectives. The first is to demonstrate through tests and
benchmarks the fundamental problems in implementations of regular expressions in sev-
eral modern languages. The second objective is to achieve a minimalist implementation
of regular expressions, using the theory described by Kleene and the method proposed by
Thompson to construct and simulate the automaton.

The implementation proposed in this work does not include certain features which
are common most modern flavors of regular expressions. Some of these features can be
implemented without sacrificing execution efficiency; whereas others may introduce some
complexity, while still running in polynomial time. Some features, however, can not be
implemented without making the algorithm exponential in the worst case.

We intend to show in this paper that the problem of recognizing strings in the
languages denoted by regular expressions can be efficiently solved even with the simplest
implementations, provided that its theory is observed.

2. Automaton Construction and Simulation
Given the synergy between regular expressions and finite automata and considering the
ease of dealing with each of them in specific situations, it is useful to be able to convert
between them. Ken Thompson [Thompson 1968] described a method for constructing
automata from regular expressions.

The method consists in building the automaton recursively by analyzing the syntax
tree of the expression, a procedure that needs to be done before start to build the automa-
ton. In the original paper by Thompson, this step was done by building the expression
in infix notation. However, in order to allow extensibility of expression format, we will
define the full grammar of regular expressions that are accepted.

2.1. Syntactic Analysis

The first step in the construction of the automaton is to parse the expression, building
the abstract syntax tree (AST). A simple generative grammar can be defined – using the
EBNF (Extended Backus-Naur Form) – that represents the language formed by all regular
expressions.

<start> ::= [<option>]

<option> ::= <sequence> { "|" <sequence> }*

<sequence> ::= <repetition> { <repetition> }*

<repetition> ::= <primary> { "*" | "?" | "+" }*

<primary> ::= <literal> | "(" <start> ")"

It is not defined, but <literal> is any character except any of *?+|().

In this way, the expression can be easily analyzed. For example, the expression
(a|a)+ b would be evaluated as the tree depicted in Figure 1.

<sequence>

<repetition, +> <literal, b>

<option>

<literal, a> <literal, a>

Figure 1. AST for the expression (a|a)+b. In this case, we omit the trivial nodes,
e.g. option nodes with a single sequence inside, repetition nodes without any
repetition operator, etc.

Using the EBNF, the tree can be produced by several parser generator tools present
in many languages. Notable examples include the YACC (Yet Another Compiler Com-
piler), the JavaCC (Java Compiler Compiler) and ANTLR (ANother Tool for Language
Recognition).

With this AST, conversion to finite automaton becomes rather trivial, as will be
discussed in the next sections.

2.2. Notation

We will introduce an unusual notation to represent the automaton, that will make the
construction easier. For convenience purposes, every state qi ∈ Q will be of one of three
possible types:

1. CONSUME state: has as single transition that consumes a single character from
the input;

2. JUMP state: has one or more ε transitions to distinct states;
3. MATCH state: an accept state with no transitions.

a
Figure 2. Example state representation in the new notation

Figure 2 shows how the states in this notation may be represented in a diagram.

This representation simplifies visualization by omitting the ε transition labels and
emphasizing the difference between the CONSUME and JUMP states. An example state
diagram in the new notation can be seen in Figure 3.

ε

a a b

a a b

ε

εε

ε

Figure 3. Same automaton represented in both notations: standard (above) and
new (below)

The diagram in Figure 3 denotes the regular expression (a|a)+b. The sequential
disposition of the states has some advantages, as it allows direct translation to a program-
like representation (as a series of instructions). This automaton, for instance, can be
translated as:

0000: JUMP (+1, +3)

0001: CONSUME a

0002: JUMP (+2,)

0003: CONSUME a

0004: JUMP (+1, -4)

0005: CONSUME b

0006: MATCH!

The JUMP instructions with more than one label express the non-determinism of
the automaton. If a deterministic machine was built to run these instructions, when faced
with JUMPs it could proceed to any of the defined addresses.

2.3. Construction

The construction of the automaton consists in recursively converting each of the nodes in
the AST to a specific automaton following a recipe. Each of these recipes has only one
input state and all transitions that do not point to a node within the automaton itself, point
to a single output node.

The following table shows the conversion for each node type. For notational pur-
poses, capital letters represent complex automata produced with inner nodes, but they all
follow the same construction rule.

Table 1. Automaton construction for each expression type
Type Expression Construction Instructions

Literal a a CONSUME a

Sequence ST S T
<instructions of S>

<instructions of T>

Option S|T S T

JUMP (+1, <size of S>+2)

<instructions of S>

JUMP (<size of T>+1)

<instructions of T>

Kleene+ S+ S <instructions of S>

JUMP (+1, -<size of S>)

Optional S? S JUMP (+1, <size of S>+1)

<instructions of S>

Kleene* S∗ S
JUMP (+1, <size of S>+2)

<instructions of S>

JUMP (+1, -<size of S>)

To convert an automaton using these rules, simply traverse the AST in post-order,
initially processing all literals and recursively using them as input to the upper nodes.
Figure 4 shows an example of conversion using the expression (a|a)+b.

(a|a)+b

b

(a|a)+
(a|a)

aa

a a b

Figure 4. Example of construction for automaton (a|a)+b

In an optimized implementation, this step can be replaced by machine code gener-
ation (as in Thompson’s original paper). However, for simplicity we describe some useful
representations of the generated automaton.

2.4. Simulation
Simulating the execution of a non-deterministic automaton using a deterministic machine
is a hard problem in itself. There may be an exponential number of possible paths in the
automaton [Rabin and Scott 1959]. This is the exact spot where most implementations
fail to find a polynomial solution.

But given that we are not interested in all paths, but only if one of them leads to
an accept state, there are some easier options to simulate those automata. Some of them
are:

Backtracking to try all possible paths, one at a time, rewinding to the last choice in case
of failure;

Backtracking with memoization same as previous, but memorizing if one state leads to
an accept state, given some part of the input;

Convert to DFA to eagerly convert the NFA to a deterministic automaton before execu-
tion;

Parallel simulation to simulate all possible state transitions concurrently, pruning re-
peated states;

Lazy DFA conversion similar to parallel simulation, but memorizing which sets of states
have transitions between them, which is the same as lazily converting to a DFA.

The chosen method for this implementation was the parallel simulation. It con-
sists, whenever faced with a decision, in choosing both options simultaneously, and keep-
ing parallel executions.

Initially, it may seem that this leads to a set of up to 2n states running simulta-
neously, but given that the automaton has a finite number of states, there are at most m
possible states running at any time (for each input character). This is so because even-
tually multiple decisions can collide in the same state, thus eliminating the exponential
nature of the evaluation. So, for an input with n characters evaluated against an automaton
m states, the worst case time complexity is O(n×m).

The goal is that, at runtime, one character will be read at a time. Then, before each
run it must evaluate all ε transitions and keeps all flows on hold positioned in CONSUME
states.

The main advantage is to have polynomial running time (O(n×m)). Also, it just
needs to read the input once and does not require the use of stack. However, it needs
additional memory (O(m)). And compared to running with a converted DFA it is slower
to recognize strings.

3. Implementation
In this section we will discuss the implementation of the library Pyrex (Python Regular
Expressions).

The initial goal was to achieve a truly polynomial regular expressions implemen-
tation. After that, the implementation was focused on simplicity. We avoided implemen-
tation tricks to improve performance at the expense of readability. All choices were made
to reduce implementation complexity. Even so, the algorithm used was efficient enough
to have better worst-case performance than most implementations.

We chose Python to implement this project. Python is a virtual machine language,
like Java. However, its virtual machine does not have the runtime optimizations that most
Java implementations have. Also, its dynamic typing sometimes makes it even slower
than other static typed languages. Even so, due to the reduced amount of special charac-
ters in its syntax, programs written in Python are usually more readable and simpler.

The entire implementation of Pyrex has 67 lines of code and less than 3KB. This
implementation covers regular expression parsing, a rudimentary error handling, automa-
ton construction and simulation.

The project was implemented using only Python 2.7 standard library, but it also
works in Python 3.0 and higher.

3.1. Features

The features were chosen as the minimum set to make possible to compare Pyrex and
other implementations, while being simple enough to be explainable in a few minutes.
So, we implemented:

• Literals (e.g. a)
• Sequences (e.g. ab)
• Options (e.g. ab|cd)
• Optionals (e.g. a?)
• Kleene* (e.g. a∗)
• Kleene+ (e.g. a+)

These features are very close to those described by Thompson [Thompson 1968]
and they make it possible to unambiguously represent regular languages.

3.2. Code structure

The code is basically divided into two parts: a parser and a matcher.

The parser is responsible for receiving a string with a regular expression, to syn-
tactically parse it and to return an object (the matcher) that is able to recognize strings
which are part of the regular language defined.

The matcher contains information of the generated automaton and functions that
can simulate its execution. It is implemented as a Python class with a match method,
besides the overloading of the operator repr of Python, which provides a useful view
of the object at debug time.

To use Pyrex, one must compile the automaton using the rex function, and then
evaluate strings using the match method of the Machine class. An example can be seen
below:

import pyrex

machine = pyrex.rex('a(ab)+')

print machine.match('aababxx')

The match function return can be either a tuple with two elements (indexes start
and end of the match) or a null reference (None in Python). In the example, the return
would be a tuple (0, 5), indicating that the match starts at index 0 of the string and ends at
index 4. Notice that the tuple denotes an open interval to the right.

3.3. Parsing

Parsing is done by the function rex. It implements a rudimentary recursive descending
parser. The EBNF is described in Section 2.1.

The implementation is simple, it uses an instance of the deque class as tokens
buffer and recursive calls to implement the rules. For each of the four rules defined the
EBNF, there is a nested method in rex to represent it.

Error handling is simple but effective. Whenever an unexpected character is en-
countered in the input, it is reported. One of the mechanisms can be observed in the
main parser code below, where after consuming all possible characters, if there are still
remaining ones at the input, an exception is thrown.

e = option()

if tokens:

raise Exception('Not expected: "{}"'.format(''.join(tokens)))

return Machine(e)

3.4. Representation
During the parsing, the regular expression is transformed into a representation of the
associated automaton. This automaton is represented as an array of objects, where each
position of the array represents a state of the automaton.

As defined in Section 2.2 (page 3), the notation used in this automaton provides
three types of state: CONSUME JUMP and MATCH. CONSUME states are represented
by the character they consume. JUMP states are represented by a tuple of integers that
inform how many states ahead or behind it should ‘skip’. MATCH states do not need
representation because they always occur at the end of the automaton (according to this
notation).

a a b

Figure 5. Representation of the automaton as a state diagram

For example, the automaton represented in the Figure 5 is equivalent to the array:

[(1, 3), 'a', (2,), 'a', (1, -4), 'b']

which can also be represented as instructions

0000: JUMP (1, 3)

0001: CONSUME a

0002: JUMP (2,)

0003: CONSUME a

0004: JUMP (1, -4)

0005: CONSUME b

0006: MATCH!

3.5. Simulation
The simulation is performed by the matcher and match methods of Machine class. The
difference between them is that the first returns an iterator that assesses the state of exe-
cution of the automaton for each input character. The second just returns the result of the
match in the end. In the implementation, the match method uses the matcher method, as
shown in the snippet below:

def match(self, string):

return reduce(lambda _, s: s[1], self.matcher(string), None)

The method implemented for the simulation of the automaton is the parallel simu-
lation. This method was chosen because it combines a polynomial asymptotic complexity
with a reasonable ease of implementation.

As is customary in the implementation of regular expressions, the match is per-
formed in case any substring of the input belongs to the language defined. The parallel
simulation method is more advantageous as it requires little change in order to support
this mode of execution.

The implementation is based on cycles of use, where a set of initial states simulta-
neously goes through a transition with the same character c for a set of subsequent states.

In order to represent the states, we use two lists, A and B, which at all times
represent respectively the set of states of consumption achieved by the beginning of the
evaluation of the current character (A) and the set of states that the evaluation of the
current character will reach (B). After the evaluation the lists are swapped.

Each state in these lists comes with the position in the original string where the
match began. This information is created when the initial state is placed on the list for
each character. It is then copied each time the state is resolved and advances to their
successors. In the list, the state is represented by a tuple (start, j), where start is the
position in the input where the match began and j is the index of the current state.

It is important to observe that the same state never enters in list B twice in the
same cycle of consumption. This check is performed by the array V, which controls the
index of the last character where each state joined the list of states. Initially, this list is
populated with values -1.

As only CONSUME states enter the lists of states to participate in the consump-
tion cycle (for obvious reasons), all JUMP states must be assessed before the start of the
consumption cycle.

The implementation of the addnext method adds states to the following list of
consumption (B), recursively solving JUMP states in their respective following CONSUME
states. This method also returns the number of times the MATCH state was reached.

def addnext(start, i, j):

if j==self.n: return 1

if V[j] == i: return 0

V[j] = i

if isinstance(self.states[j], tuple):

return sum(addnext(start, i, j+k) for k in self.states[j])

B.append((start, j))

return 0

Thus, each consumption cycle is characterized by the steps:

• Start new flow in the initial state with the current character.

• Invert lists of CONSUME, cleaning the list of next (B).
• Evaluate the consumption of the current character adding subsequent states in the

next list.

The implementation of these steps can be seen below:

def key(a): return (a[1]-a[0], -a[0]) if a else (0, 0)

answer = None

for i, c in enumerate(string):

addnext(i, i, 0)

yield i, answer, B

A, B = B, A

del B[:]

for start, j in A:

if self.states[j] in (None, c) and addnext(start, i+1, j+1):

answer = max(answer, (start, i+1), key=key)

yield len(string), answer, B

Initially a new flow is added starting at character i. Then the CONSUME lists
are reversed. Finally, the CONSUME states are evaluated against the input, the due states
advance, in addition to updating the best response, in case some of these states is a MATCH
state.

3.6. match Method Return
To recognize words using regular expressions is a decision problem. However, it has
proven useful over time to recognize not only strings in regular languages, but also any
sub-string belonging to it, then returning their location in the source string.

A regular expression abcd would return a valid match in a string zzabcdzz. This
behavior allows multiple solutions to be valid. For example, the same expression could
find two different results in the word abcdabcd. Indeed, many results could overlap. The
expression a∗, when evaluating the word aaaa can lead to 10 different results. The imple-
mentation used greatly influences the choice of which results should be returned.

The implementation proposed in this project always favors the longest answers.
In case of a tie, the favored answer will be the one that starts leftmost in the input.

This behavior is consistent with the original article by Thompson and, conse-
quently, with implementation of tools such as sed and grep of the Unix operating system.
On the other hand, it differs from other usual implementations based on Perl, which gen-
erally return the first answer found by following a greedy order of evaluation [Cox 2007].

An easy way to verify this is to compare the difference of the match expression
a∗(b|abc) against string abc. The default implementation of Python returns the string ab.
The implementation of this project will find the string abc. The difference is that Python’s
implementation attempts to greedly match the longest string with a∗, while Pyrex can find
the longest answer to the entire expression.

3.7. Preview
Drawing on the implementation of the matcher method it was possible to build a preview
function in text mode, showing the step-by-step execution of the algorithm. It aims to
facilitate the understanding of the method. It is a command line tool, also written in
Python, that uses the Pyrex library.

The program shows the steps of the match of any regular expression. For example,
if the program is called to visualize the match of the expression a+b+c+ (see the generated
the automaton in Figure 6) against the string aabbbccc, some steps of the implementation
can be seen below:

a b c

Figure 6. Automaton for the expression a+b+c+

Best answer: <none>

Input: aabbbcccc

ˆ (3)

3 >0000: CONSUME a

0001: JUMP (1, -1)

0 >0002: CONSUME b

0003: JUMP (1, -1)

0 >0004: CONSUME c

0005: JUMP (1, -1)

0006: MATCH!

This form of display shows the current status of all flows being executed by the
automaton. The number displayed next to each statement is the index of the input where
that flow started. In the specific example, there are three flows running:

• The one that starts with each character in the string. (3)
• The one that keeps reading characters b from the input, while there still are. (0)
• The one that is ready to read characters c when they start. (0)

Best answer: aabbbc (0, 6)

Input: aabbbcccc

ˆ (6)

6 >0000: CONSUME a

0001: JUMP (1, -1)

0002: CONSUME b

0003: JUMP (1, -1)

0 >0004: CONSUME c

0005: JUMP (1, -1)

0006: MATCH!

At this time, there is already a match for the string (since there are already charac-
ters c read). The best match up to this point is shown on the line Best answer. This value
is updated at every step. In addition, the following states are active:

Table 2. Versions of the tested implementations
Implementation Environment Original language

pyrex Python 2.7.3 Python
re Python 2.7.3 C

Oniguruma Ruby 1.9.3 C
java.util.regex Java 1.6.0 45 Java

• The one that starts with each character in the string. (6)
• The one that keeps reading c characters at the input while there still are. (0)

The tool uses the matcher method, which returns an iterator that, at each iteration,
returns a tuple (i, answer, state), where i is the current index being read at the input,
answer is the best response to date and state is the current list of states, which is com-
posed of several tuples (start, j).

4. Benchmarks
Even though the matching of backreferences is an NP-complete problem
[Câmpeanu and Santean 2007], matching regular expressions itself is not. The main
objective of this work is to show that even in cases where expressions could be evaluated
in polynomial time, it does not happen in a great part of modern implementations.

In order to demonstrate this point, some tests were made using the same regular
expression in various implementations and comparing their execution times considering
the growth of the input string. All tests were run on an Intel Core i7-3770 4×2×3.4GHz
with 16GB of RAM. The system was running GNU/Linux Mint 17 with Linux Kernel
3.13.0-24-generic. Versions of environments where benchmarks were run are shown in
Table 2.

Each test was run 50 times and the average duration for each input size was
recorded. All graphics are in logarithmic scale to facilitate visualization of the large range
of values that each implementation represents.

4.1. Benchmark 1: (a?a)+b
In this test the string an was evaluated against the regular expression (a?a)+b. The aim
is to show the exponential behavior of implementations based on backtracking. The ex-
pression chosen forces the choice for each input character about whether or not to use the
character a in the expression a?.

Figure 7 shows the execution time for the different implementations.

It should be observed that the implementation in Java, which initially has the worst
performance, quickly suffers JIT compilation (Just in Time), which causes the runtime to
drop significantly, while keeping its exponential character.

4.2. Benchmark 2: a∗b

In this test, the goal was to demonstrate the high constant of Pyrex implementation in
cases where the execution time is linear for all implementations.

Figure 8 shows the execution time for the different implementations.

0 10 20 30 40
10−6

10−4

10−2

100

102

n

tim
e

(s
)

pyrex
python
ruby
java

Figure 7. Runtime (in logarithmic scale) to match an against (a?a)+b

0 100 200 300 400 500

10−6

10−5

10−4

10−3

n

tim
e

(s
)

pyrex
python
ruby
java

Figure 8. Runtime (in logarithmic scale) to match an against a∗b

A clear disadvantage may be observed in implementations in managed code
(Pyrex and Java) against other implementations written in C (Ruby and Python) for cases
where time complexity is linear.

4.3. Benchmark 3: a∗a∗a∗a∗a∗b

In this test, the goal was to demonstrate how even in cases where implementations based
on backtracking do not generate exponential running time, it is still possible to achieve
higher execution time than O(n). This expression forces a backtracking for consump-
tion of several repetitions a∗. The expected running time of implementations based on
backtracking is O(n5).

Figure 9 shows the execution time for the different implementations.

0 20 40 60 80 100 120

10−6

10−5

10−4

10−3

10−2

10−1

100

101

n

tim
e

(s
)

pyrex
python
ruby
java

Figure 9. Runtime (in logarithmic scale) to match an against a ∗ a ∗ a ∗ a ∗ a ∗ b

This result also shows how certain static optimizations allow the implementation
of Ruby to keep its running time linear while the Python implementation which is also
written in C, has a time complexity greater than that of Pyrex.

5. Conclusion

The main contribution of this work was an implementation of regular expressions using
the Thompson Construction Algorithm. A simple method was used to represent the states
of non-deterministic finite automata as instructions of an abstract machine that can be
deployed on any platform. The implementation was done in Python for simplicity.

The results were quite satisfactory, showing that it is possible to implement reg-
ular expressions with polynomial algorithms. The implementation, though not the most
efficient for trivial cases, proved to be very useful to demonstrate the well-established
theory of regular expressions.

The inability of implementations in languages like Python, Ruby, and Java to rec-
ognize them in polynomial time (in the worst case) was also demonstrated, even for some
expressions without backreferences.

These results confirm the need for parsimony when using regular expressions,
especially in software that share hardware resources among multiple users, e.g. websites
and other network services.

References
Câmpeanu, C. and Santean, N. (2007). On pattern expression languages. Proceedings

AutoMathA.

Cox, R. (2007). Regular expression matching can be simple and fast.

Kirrage, J., Rathnayake, A., and Thielecke, H. (2013). Static analysis for regular expres-
sion denial-of-service attacks. Springer LNCS, (7873).

Kleene, S. C. (1956). Representation of events in nerve nets and finite automata. In
Automata Studies, Ann. Math. Stud., (34):3–41.

Mcculloch, W. and Pitts, W. (1943). A logical calculus of ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics, 5:127–147.

Popov, N. (2012). The true power of regular expressions.

Rabin, M. O. and Scott, D. (1959). Finite automata and their decision problems. IBM
journal of research and development, 3(2):114–125.

Thompson, K. (1968). Regular expression search algorithm. Communications of the
ACM, 11(6):419–422.

Weidman, A. (2010). Regular expression denial of service - redos.

