USING R TO TEACH SEASONAL ADJUSTMENT
DOI:
https://doi.org/10.12957/cadest.2016.25077Resumo
DOI: 10.12957/cadest.2016.25077
This article shows, using R software, how to seasonally adjust a time series using the X-13-ARIMA-SEATS program and the seasonal package developed by Christoph Sax. In addition to presenting step-by-step seasonal adjustment, the article also explores how to analyze the program output and how to forecast the original and seasonally adjusted time series. A case study was proposed using the Brazilian industrial production. It was verified that the effect of Carnival, Easter and working days improved the seasonal adjustment when treated by the model.
Keywords: Seasonal Adjustment, X13-ARIMA-SEATS, R software, RStudio.
Downloads
Referências
Adler, J. (2009). R in a Nutshell. Sebastopol, CA: O'Reilly.
Braun, W. J., & Murdoch, D. J. (2008). A First Course in Statistical Programming with R. Cambridge University Press.
Dalgaard, P. (2008). Introductory Statistics with R. LLC, New York: Springer Science + Business Media.
Eurostat. (2015). Outliers. Fonte: E-learning Courses - Seasonal Adjustment: http://www.sa-elearning.eu/outliers
Autor1, Autor2, D. C., Oliveira, I. C., & Pereira, R. J. (2016). Análise de Séries Temporais usando o R - um curso introdutório. Rio de Janeiro: Working Book.
Findley, D. F., Monsell, B. C., Bell, W. R., Otto, M. C., & Chen, B. C. (1998). New Capabilities and Methods of the X-12-ARIMA Seasonal Adjustment Program (with discussion). Journal of Business and Economic Statistics, 12.
Gómez, V., & Maravall, A. (1996). Programs TRAMO (Time series Regression with Arima noise, Missingo observations, and Outliers) and SEATS (Signal Extraction in Arima Time Series. Instructions for the User. Working Paper, Banco de España.
Hodgess, E. M. (2004). A Computer Evolution in Teaching Undergraduate Time Series. Journal of Statistics Education.
IBGE. (2015). Pesquisa Industrial Mensal Produção Física - Brasil. Fonte: Instituto Brasileiro de Geografia e Estatística: http://ibge.gov.br/home/estatistica/indicadores/industria/pimpf/br/default.shtm
Instituto de Pesquisa Econômica Aplicada. (2015). ipeadata. Fonte: Ipea Data: http://www.ipeadata.gov.br/
R Core Team. (2015). An Introduction to R. Fonte: The Comprehensive R Archive Network: https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf
R Core Team. (2015). The R Project for Statistical Computing. Fonte: https://www.r-project.org/
Sax, C. (2015). Github Christoph Sax. Fonte: Github: https://github.com/christophsax
United States Census Bureau. (2015). Historical Papers Concerning X-11 and Seasonal Adjustment. Fonte: X-13ARIMA-SEATS Seasonal Adjustment Program: https://www.census.gov/srd/www/sapaper/historicpapers.html
United States Census Bureau. (2015). X-13ARIMA-SEATS Reference Manual Acessible HTML Output. United States Census Bureau. Fonte: https://www.census.gov/ts/x13as/docX13AS.pdf
United States Census Bureau. (2015). X-13ARIMA-SEATS Seasonal Adjustment Program. Fonte: United States Census Bureau: https://www.census.gov/srd/www/x13as/
Zhou, L., & Braun, W. J. (2010). Fun with the R Grid Package. Journal of Statistics Education.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Declaramos que, em caso de aceitação do artigo, os autores permanecem com os direitos autorais do artigo, concedendo a revista Cadernos do IME – Série Estatística os direitos de primeira publicação e outros direitos de publicação não exclusivos referentes ao mesmo.