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Abstract 

In this paper the one-sided CUSUM chart for controlling the incidence and 

intervention parameters of the IPD under misclassification error due to 

measurement is discussed. Explicit formulae are derived for this purpose. The 

sensitivity of the parameters of the V -mask and the Average Run Length ( ARL ) is 

studied through numerical evaluation for grid of values. Numerical results presented 

reveal that the angle   of the mask increases slightly as shift in the ratio 
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e

e




 

decreases, whereas, for fixed  , the values of d  decrease considerably as the 

deviation of 
0e  from 

1e
  increases. It is also shown that measurement error lessens 

the consumer’s risk, 2e  (because it gives early detection for the shift of the process 

parameter) and increases the producer’s risk, 1e . Further for fixed 1e , 2e , ,  
0e , 

1e  the values of ARL  decrease as we increase the values of  . 
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1. Introduction 

Quality control charts, one type of the tools in quality management and 

critical aid to the quality control (DOU and PING, 2002) are widely employed to 

monitor and ensure the process stability. The strength of control charts lies in their 

ability to reveal process shifts and identify abnormal conditions in the production 

process. 

One of the most popular control charts in industry is the cumulative sum 

(CUSUM) control chart which can be employed both when the quality characteristic 

is a continuous random variable (for monitoring the mean and variance) and when it 

is a discrete attribute (NENES & TAGARAS, 2010). Johnson and Leone (1962) 

developed mathematical procedures for construction of the CUSUM control chart for 

Poisson variable using the relationship between Wald’s Sequential Probability Ratio 

Test (SPRT) and the CUSUM. Lucas (1985) illustrated the design and 

implementation procedure for counted data for detection of increase or decrease in 

the count level. A comprehensive overview of CUSUM charts for various probability 

distributions is given by Hawkins and Olwell (1998). We refer any interested reader 

to Qiu (2014) for a related discussion. 

The design of a CUSUM chart assumes that the procedure adopted is error-

free. In practice, inspection procedures are not always perfect and are usually subject 

to errors. Error effect on control charts have generated much more interest and a 

growing body of literature on the issue is also available. Singh (1964), Kanazuka 

(1986), Singh and Sayyed (2001), Singh et al. (2002), Balamurali and 

Kalyanasundaram (2011), Maravelakis (2012), Sankle and Singh (2012), Sankle et 

al. (2012) and Chakraborty and Khurshid (2013 a, b) and references therein have 

studied the nature and magnitude of measurement error and its effect on the actual 

performance of various control charts. Recently, Chakraborty and Khurshid (2016) 

studied the effect of misclassification on the power of a control chart for proportions.  

The Poisson distribution plays a major role in any given statistical quality control 

process. However on many occasions, probability distributions often arise which are 

of the Poisson type but in which the zero value is unobserved. This is the Zero-

Truncated Poisson Distribution (ZTPD). For example, the number of occupants in a 

bus on the road can be modeled by a ZTPD because buses on the road with zero 
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occupants cannot be monitored. For concrete examples Best at al. (2007) may be 

referred to. Chakraborty and Kakoty (1987) constructed a CUSUM scheme for 

ZTPD. 

Another type of probability distribution has received much attention in the 

literature in which the notion of intervention has been incorporated. These types of 

distributions furnish evidence on the usefulness of numerous preventive actions 

discussed in many areas of scientific research. Shanmugam (1985) presented an 

intervened Poisson distribution (IPD) as an alternate for ZTPD where certain 

intervention process alters the mean of rare events. The IPD has been widely used, 

primarily in epidemiological studies, reliability settings and queuing problems and 

has been further studied by Shanmugam (1992); Huang and Fung (1989) and 

Dhanavanthan (1998, 2000).  

The objective of the present paper is to investigate the effect of 

misclassification due to measurement error on power of control chart for IPD. 

Separate formulae are derived for calculating probabilities of misclassification due to 

measurement of error for incidence and intervention parameters of the IPD. The 

article is structured as follows. Section 2 introduces IPD and lists some known 

results. Section 3 briefly discusses about misclassification error and Lavin’s 

expression is presented. In Section 4 we develop a procedure and construct a one-

sided CUSUM chart for controlling the incidence and intervention parameters of the 

IPD under misclassification error due to measurement. To explore the sensitivity of 

the monitoring procedure, average run length for both the parameters are also 

derived in this section. Section 5 presents numerical results over a grid of values and 

some discussions are made and conclusions in Section 6 close the paper.  

 

2. Intervened Poisson distribution (IPD) 

A modified version of ZTPD, which is called an Intervened Poisson 

Distribution (IPD) as considered by Shanmugam (1985) was introduced in medicine 

in the context of cholera cases: Let Y  be the number of cholera cases per household 

where the event 0Y  is unobservable and assume that the distribution of Y  is a 

ZTPD with parameter .  Assuming that a new preventive measure alters   to  , 

.0    Let Z  be the total number of cholera cases that occurred after the 
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preventive measure is applied and assume that Z  is a Poisson )(  random 

variable. Assuming that Y  and Z  are stochastically independent and ZYX   

represent the total number of cholera cases then the resulting distribution of 

ZYX   is given by following probability mass function  

!)]1([

])1[(
)(

xee
xXP

xxx 
 


     (2.1) 

where ,...2,1x , ,0  and  0 . Equation (2.1) is commonly called IPD 

identified by Shanmugam (1985). Here   and   are called incidence and 

intervention parameters respectively. The mean and variance of IPD with probability 

mass function (2.1) are, respectively  

])1(1[)( 1  eXE ,     (2.2) 

2

1

1
])1(1[)( 










 



 


e
eeXVar    (2.3) 

We observe that when 0  we get the ZTPD. 

In the last decades, there has been considerable interest in intervened 

distributions and their variants (see, for example, DHANAVANTHAN, 1998, 2000; 

HUANG & FUNG, 1989; KUMAR & SHIBU, 2011, 2012, 2013; KUMAR & 

SREEJAKUMARI, 2012, 2017; PATEL, 1999; PATEL & GAJJAR, 1990, 2000; 

SCOLLNIK, 1995, 2006). Much of this interest stems from the pioneering paper of 

Shanmugam (1985), though this type of model appears to have originated in the field 

of medicine. The main advantage of IPD is that it provides information on the 

effectiveness of various preventive actions (generally taken by health service 

agencies etc.) whereas ZTPD does not. Applications of IPD in various fields are 

illustrated in Shanmugam (1985, 1992, 2005), Johnson et al. (2005). Kakoty and 

Chakraborty (1990) studied CUSUM control chart for IPD to control the incidence 

and intervention parameters of the IPD.  

 

3. Misclassification error and expression for the true and apparent non-

conformities 

One important way of judging the performance of any classification 

procedure is to calculate its error (type I and type II) rates or misclassification 

probabilities. In every inspection system, there may be either of two possible types of 
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errors: (i) a good (conforming) item to a specification may be misclassified as 

defective (non-conforming) or (ii) a defective (non-conforming) item may be 

misclassified as good (conforming). These types of errors are recognized as errors 

due to misclassification and are generally due to chance causes.  

Thus, if 1e  and 2e  are type I and type II errors, and   is the true 

nonconformities, then the relation between true nonconformities   and apparent 

(observed) nonconformities e  is given by Lavin (1946) by his equation as (see also 

COLLINS & CASE, 1976; COLLINS et al. 1973; MITTAG & RINNE, 1993 for 

details) 

).1()1( 12   eee     (3.1) 

For the evaluation technique of 1e , 2e  and e , one may refer to Chakraborty and 

Khurshid (2016). 

 

4. CUSUM control chart (for the control of incidence parameter) 

Let mxxx ,...,, 21  be i.i.d. random variables each distributed with probability 

mass function (2.1). To test the null hypothesis 
0

:0 eeH    against the alternative 

hypothesis )(:
011 eeH   , (under misclassification error) assuming   known, 

following Johnson (1961), we use the likelihood ratio 
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The continuation region of the SPRT discriminating between the two hypotheses is 

given by 
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where   and   are the probabilities of type I and type II errors respectively. 

For a very small value of  , we obtain that the right hand side inequality of 

Equation (4.2) reduces to 
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For constructing the CUSUM chart we plot the sum 



m

i

im xS
1

 against the 

number of observations .m  Suppose O  is the last plotted point, P  is the vertex of 

the mask and the point Q  is obtained by drawing a perpendicular to the line .OP  

The change in the value of e  from 
0e  to 

1e  is detected if any plotted point falls 

below the line .PQ  In this case the parameters of the mask, namely the lead distance 

OPd   and the angle of the mask OPQ  are given by 
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To identify the nature of the parameters of the V -mask we differentiate d  and   

partially with respect to .
1e  Thus from Equation (4.4), we have 
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This will be negative, if ,0
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Again differentiating Equation (4.6), partially with respect to 
1e

  gives 
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If 0

1






e


 then the angle of the mask increases as 

1e  increases or decreases. On 

the other hand if Equation (4.8) is negative, the   increases as 
1e  decreases and 

vice-versa. The maximum or minimum is obtained by differentiating Equation (4.8) 

with respect to 
1e .  

 

4.1. Average run Length ( ARL ) under misclassification error 

Following Johnson (1961), the approximate formula for ARL  for detecting a 
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To find the characteristic of ARL , we differentiate Equation (4.9) with 

respect to 
1e , which produces 
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Equation (4.10) will be negative if the numerator is less than zero, implying 

that the ARL  decreases as 
1e  increases. Tables 1, 2 and 3 depict some numerical 

values of d ,   and ARL  for a number of combinations of the values of ,  
0e , 

1e , 

  for some values of 1e  and 2e . 
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The change in the value of e  will be detected if the inequality 
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))((log
)1(

1

e

e

ee
m

i

i

m
x






 holds good. 
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To construct the CUSUM chart in this case also we plot the sum 





m

i

im xS
1

)1(  against the number of observations .m  The change of e  from 
0e  

to 
1e , is detected if any plotted points fall below the line PQ . The parameters of the 

mask (the lead distance, d  and the angle,  ) are given by 

1)]([log
01

 eed      (4.12) 

and  








































 

0

1

01

1

1
log

)(
tan 1

e

e

ee






 .    (4.13) 

 

4.3. Average Run Length ( ARL ) 

The expected number of observations for detecting a shift in e  from 
0e  to 

1e  is approximately given by 

   ,
1

1
log1)exp()1(

1

1
log)(log

1

1

0

1

1

0

1

01
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
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






























e

e

e

e

e

eeARL










 (4.14) 

assuming that incidence parameter   is known. In this case also the same theoretical 

operation can be applied to understand the nature of the parameters of the V -mask 

and the ARL . 

 

5. Numerical results 

Table 1, using Equation (4.4), which gives values of d  for controlling the 

incidence parameter for a number of combinations of ,  
0e , 

1e ,   for some 

values of 1e  and 2e  shows that for a fixed  , the values of d  decreases considerably 

as the difference )(
01 ee    increases, whereas for the same difference )(

01 ee    it 

increases as   decreases for fixed ,1e  2e  and  .  

To see the error effect (error due to misclassification), it has been observed 

from Table 1 (A to E) that the values of d  increase considerably as we increase 1e  
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for fixed 2e  and   when the ratio between (

0

1

e

e




) decreases, whereas for fixed 1e  and 

  the values of d  increase considerably as there is an increase in 2e  when the 

corresponding ratio (

0

1

e

e




) increases. But for fixed 1e , 2e  the values of d  decrease as 

we increase the values of intervention parameter   for the fixed difference. It is 

interesting to note that the values of d  are always less when 021  ee  for fixed   

and fixed difference. 

Table 1: Values of d  for testing incidence parameter (using Equation (4.4)) 

(a) When 01 e , 30.02 e  and 2  

0  
0e  1  

1e    

0.05 0.025 0.01 0.005 0.001 

0.5 0.35 1 0.7 1.8921 2.3298 2.9085 3.3463 4.3627 

  2 1.4 0.7331 0.9027 1.1269 1.2965 1.6904 

  3 2.1 0.4726 0.5821 0.7267 0.8361 1.0900 

  4 2.8 0.3521 0.4336 0.5413 0.6228 0.8120 

         

1 0.7 2 1.4 1.1977 1.4737 1.8397 2.1166 2.7596 

  3 2.1 0.6299 0.7757 0.9683 1.1141 1.4525 

  4 2.8 0.4327 0.5328 0.6651 0.7653 0.9977 

 

(b) When 02.01 e , 02 e  and 2  

0  
0e  1  

1e    

0.05 0.025 0.01 0.005 0.001 

0.5 0.51 1 1 1.5531 1.9125 2.3875 2.7469 3.5813 

         

1 0.7 2 1.98 0.5784 0.7129 0.8892 1.0230 1.3338 

  3 2.98 0.3620 0.4458 0.5565 0.6402 0.8843 

  4 3.98 0.2649 0.3262 0.4072 0.4685 0.6108 

 

(c) When 02.01 e , 30.02 e  and 2  

0  
0e  1  

1e    

0.05 0.025 0.01 0.005 0.001 

0.5 0.36 1 0.7 1.9581 2.4112 3.0101 3.4631 4.5151 

  2 1.38 0.7553 0.9300 1.1610 1.3358 1.7415 

  3 2.06 0.4863 0.5989 0.7476 0.8601 1.1214 

  4 2.74 0.3623 0.4461 0.5569 0.6407 0.8353 

 

(d) When 02.01 e , 30.02 e  and 3  

0  
0e  1  

1e    

0.05 0.025 0.01 0.005 0.001 

0.5 0.36 1 0.70 1.6021 1.9728 2.4628 2.8335 3.6942 

  2 1.38 0.6008 0.7398 0.9235 1.0625 1.3853 

  3 2.06 0.3811 0.4693 0.5859 0.6741 0.8789 

  4 2.74 0.2813 0.3464 0.4324 0.4975 0.6486 
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  (e) When 01 e , 02 e  and 2  

0  1    

0.05 0.025 0.01 0.005 0.001 

0.5 1 1.5176 1.8686 2.2328 2.6816 3.4992 

 2 0.5666 0.6977 0.8710 1.0021 1.3065 

 3 0.3574 0.4401 0.5494 0.6321 0.8242 

       

1 2 0.9042 1.1134 1.3899 1.5991 2.0849 

 3 0.4631 0.5758 0.7188 0.8269 1.0782 

 4 0.3167 0.3900 0.4869 0.5602 0.7303 

 

Table 2, employing Equation (4.5), shows that the angle   of the mask 

increases as the ratio 

0

1

e

e




 decreases. It is also evident from Table 2 that for fixed 1e , 

the angle of the mask decreases as we increase the values of 2e  for fixed   when the 

ratio between (

0

1

e

e




) decreases. But for fixed ratio, 1e  and 2e  the angle of the mask 

increases as we increase the values of  . In the absence of misclassification error i. 

e., 021  ee , the angle of the V -mask is always greater for a fixed intervention 

parameter. 

 

Table 2: Values of   (degree) for controlling incidence parameter (employing Equation (4.5)) 

 (a) When 01 e , 30.02 e  and 2  

 
1e  

0e  0.70 1.4 2.1 2.8 

0.35 66.36 71.26 74.22 76.26 

0.70 - 74.52 76.99 78.68 

 
 (b) When 02.01 e , 02 e  and 2  

 
1e  

0e  1 1.98 2.98 3.98 

0.51 70.76 75.32 77.96 79.70 

 
 (c) When 02.01 e , 30.02 e  and  

2  

 
1e  

0e  0.7 1.38 2.06 2.74 

0.36 66.51 71.29 74.19 76.21 
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 (d) When 02.01 e , 30.02 e  and  

3  

 
1e  

0e  0.7 1.38 2.06 2.74 

0.36 70.42 74.92 77.49 79.21 

 
 (e) When 01 e , 02 e  and 2   

 
1e  

0e  1 2 3 4 5 

0.5 72.06 75.31 78.00 79.69 80.93 

1.5 - 79.85 81.61 82.79 83.61 

2.5 - - 83.23 84.12 84.77 

 

Table 3, utilizing Equation (4.9), shows the values of ARL  for different 

combinations of 1e , 2e , ,  
0e , 

1e ,  . It is seen from Table 3 that the ARL  changes 

in the same direction as the values of d  for ,1e  2e  and  . It is observed from the 

table that the values of ARL  increase considerably as we increase 1e  for fixed ,  2e  

and   when the values of the ratio (

0

1

e

e




) decrease. A similar trend is observed when 

the values of 2e  increase for fixed 1e  but the magnitude of the difference in the ARL  

value is higher when 2e  increases for fixed 1e  (which can be observed if we compare 

Table 3 (A and C with B and C)). But for fixed 1e , 2e , ,  
0e , 

1e  the values of 

ARL  decrease as we increase the values of  . 

 

Table 3: Values of ARL  for controlling incidence parameter (utilizing Equation (4.9)) 

(a) When 01 e , 30.02 e  and 2  

0  
0e  1  

1e    

0.05 0.025 0.01 0.005 0.001 

0.5 0.35 1 0.7 8.5423 10.519 13.13 15.11 19.70 

  2 1.4 1.2635 1.5558 1.9422 2.2346 2.9134 

  3 2.1 0.5472 0.6739 0.8412 0.9679 1.2619 

  4 2.8 0.3208 0.3951 0.4932 0.5875 0.7398 

 

(b) When 02.01 e , 02 e  and 2  

0  
0e  1  

1e    

0.05 0.025 0.01 0.005 0.001 

0.5 0.51 1 1 6.2041 7.6396 9.5373 10.973 14.306 

  2 1.98 0.9119 1.1229 1.4018 1.6128 2.1027 
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  3 2.98 0.3847 0.5913 0.7382 0.8493 1.1073 

  4 3.98 0.2239 0.2757 0.3442 0.3960 0.5163 

 

(c) When 02.01 e , 02 e  and 2  

0  
0e  1  

1e    

0.05 0.025 0.01 0.005 0.001 

0.5 0.36 1 0.7 9.1955 11.323 14.136 16.263 21.204 

  2 1.38 1.3496 1.6618 2.7046 2.3869 3.1119 

  3 2.06 0.5822 0.7169 0.8950 1.0297 1.3425 

  4 2.74 0.3405 0.4193 0.5235 0.6022 0.7852 

 

(d) When 02.01 e , 3.02 e  and 3  

0  
0e  1  

1e    

0.05 0.025 0.01 0.005 0.001 

0.5 0.36 1 0.7 6.6383 8.1742 10.205 11.741 15.307 

  2 1.38 0.9809 1.2079 1.5079 1.7348 2.2618 

  3 2.06 0.4256 0.5241 0.6543 0.7527 0.9814 

  4 2.74 0.2501 0.3080 0.3845 0.4423 0.5767 

 

Note: 0  and 1  are incidence parameters under null and alternative hypotheses. 

Similar calculations can be done and conclusions can be drawn accordingly 

for controlling the intervention parameter   of IPD under the CUSUM scheme 

(with error due to misclassification). 

 

6. Conclusions 

This study presents explicit formulae to construct a one-sided CUSUM chart 

for controlling the incidence and intervention parameters of the IPD under 

misclassification error due to measurement. To explore the sensitivity of the 

monitoring procedure, average run length for both the parameters are also derived. 

Numerical results presented in Section 5 reveal that the angle   of the mask 

increases slightly as shift in the ratio 

0

1

e

e




 decreases. On the other hand, for fixed  , 

the values of d  decrease considerably as the deviation of 
0e  from 

1e
  increases. The 

result clearly shows that measurement error lessens the consumer’s risk, 2e  and 

increases the producer’s risk, 1e . 
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